Proof of Theorem eqgvscpbl
Step | Hyp | Ref
| Expression |
1 | | eqgvscpbl.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ LMod) |
2 | 1 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → 𝑀 ∈ LMod) |
3 | | eqgvscpbl.k |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ 𝑆) |
4 | 3 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → 𝐾 ∈ 𝑆) |
5 | | simpr1 1192 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → 𝑋 ∈ 𝐵) |
6 | | eqgvscpbl.v |
. . . . . 6
⊢ 𝐵 = (Base‘𝑀) |
7 | | eqid 2738 |
. . . . . 6
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
8 | | eqgvscpbl.p |
. . . . . 6
⊢ · = (
·𝑠 ‘𝑀) |
9 | | eqgvscpbl.s |
. . . . . 6
⊢ 𝑆 =
(Base‘(Scalar‘𝑀)) |
10 | 6, 7, 8, 9 | lmodvscl 20055 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 · 𝑋) ∈ 𝐵) |
11 | 2, 4, 5, 10 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑋) ∈ 𝐵) |
12 | | simpr2 1193 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → 𝑌 ∈ 𝐵) |
13 | 6, 7, 8, 9 | lmodvscl 20055 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑌 ∈ 𝐵) → (𝐾 · 𝑌) ∈ 𝐵) |
14 | 2, 4, 12, 13 | syl3anc 1369 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑌) ∈ 𝐵) |
15 | 1 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → 𝑀 ∈ LMod) |
16 | 3 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → 𝐾 ∈ 𝑆) |
17 | | lmodgrp 20045 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
18 | 15, 17 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → 𝑀 ∈ Grp) |
19 | | simplr 765 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → 𝑋 ∈ 𝐵) |
20 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(invg‘𝑀) = (invg‘𝑀) |
21 | 6, 20 | grpinvcl 18542 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((invg‘𝑀)‘𝑋) ∈ 𝐵) |
22 | 18, 19, 21 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → ((invg‘𝑀)‘𝑋) ∈ 𝐵) |
23 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → 𝑌 ∈ 𝐵) |
24 | | eqid 2738 |
. . . . . . . . . 10
⊢
(+g‘𝑀) = (+g‘𝑀) |
25 | 6, 24, 7, 8, 9 | lmodvsdi 20061 |
. . . . . . . . 9
⊢ ((𝑀 ∈ LMod ∧ (𝐾 ∈ 𝑆 ∧ ((invg‘𝑀)‘𝑋) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐾 ·
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌)) = ((𝐾 ·
((invg‘𝑀)‘𝑋))(+g‘𝑀)(𝐾 · 𝑌))) |
26 | 15, 16, 22, 23, 25 | syl13anc 1370 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → (𝐾 ·
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌)) = ((𝐾 ·
((invg‘𝑀)‘𝑋))(+g‘𝑀)(𝐾 · 𝑌))) |
27 | 6, 7, 8, 20, 9 | lmodvsinv2 20214 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ LMod ∧ 𝐾 ∈ 𝑆 ∧ 𝑋 ∈ 𝐵) → (𝐾 ·
((invg‘𝑀)‘𝑋)) = ((invg‘𝑀)‘(𝐾 · 𝑋))) |
28 | 15, 16, 19, 27 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → (𝐾 ·
((invg‘𝑀)‘𝑋)) = ((invg‘𝑀)‘(𝐾 · 𝑋))) |
29 | 28 | oveq1d 7270 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → ((𝐾 ·
((invg‘𝑀)‘𝑋))(+g‘𝑀)(𝐾 · 𝑌)) = (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌))) |
30 | 26, 29 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑋 ∈ 𝐵) ∧ 𝑌 ∈ 𝐵) → (𝐾 ·
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌)) = (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌))) |
31 | 30 | anasss 466 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝐾 ·
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌)) = (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌))) |
32 | 31 | 3adantr3 1169 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → (𝐾 ·
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌)) = (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌))) |
33 | | eqgvscpbl.g |
. . . . . . 7
⊢ (𝜑 → 𝐺 ∈ (LSubSp‘𝑀)) |
34 | 33 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → 𝐺 ∈ (LSubSp‘𝑀)) |
35 | | simpr3 1194 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺) |
36 | | eqid 2738 |
. . . . . . 7
⊢
(LSubSp‘𝑀) =
(LSubSp‘𝑀) |
37 | 7, 8, 9, 36 | lssvscl 20132 |
. . . . . 6
⊢ (((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) ∧ (𝐾 ∈ 𝑆 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → (𝐾 ·
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌)) ∈ 𝐺) |
38 | 2, 34, 4, 35, 37 | syl22anc 835 |
. . . . 5
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → (𝐾 ·
(((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌)) ∈ 𝐺) |
39 | 32, 38 | eqeltrrd 2840 |
. . . 4
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌)) ∈ 𝐺) |
40 | 11, 14, 39 | 3jca 1126 |
. . 3
⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺)) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌)) ∈ 𝐺)) |
41 | 40 | ex 412 |
. 2
⊢ (𝜑 → ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌)) ∈ 𝐺))) |
42 | 1, 17 | syl 17 |
. . 3
⊢ (𝜑 → 𝑀 ∈ Grp) |
43 | 36 | lsssubg 20134 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀)) |
44 | 1, 33, 43 | syl2anc 583 |
. . . 4
⊢ (𝜑 → 𝐺 ∈ (SubGrp‘𝑀)) |
45 | 6 | subgss 18671 |
. . . 4
⊢ (𝐺 ∈ (SubGrp‘𝑀) → 𝐺 ⊆ 𝐵) |
46 | 44, 45 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ⊆ 𝐵) |
47 | | eqgvscpbl.e |
. . . 4
⊢ ∼ =
(𝑀 ~QG
𝐺) |
48 | 6, 20, 24, 47 | eqgval 18720 |
. . 3
⊢ ((𝑀 ∈ Grp ∧ 𝐺 ⊆ 𝐵) → (𝑋 ∼ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺))) |
49 | 42, 46, 48 | syl2anc 583 |
. 2
⊢ (𝜑 → (𝑋 ∼ 𝑌 ↔ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ (((invg‘𝑀)‘𝑋)(+g‘𝑀)𝑌) ∈ 𝐺))) |
50 | 6, 20, 24, 47 | eqgval 18720 |
. . 3
⊢ ((𝑀 ∈ Grp ∧ 𝐺 ⊆ 𝐵) → ((𝐾 · 𝑋) ∼ (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌)) ∈ 𝐺))) |
51 | 42, 46, 50 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝐾 · 𝑋) ∼ (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg‘𝑀)‘(𝐾 · 𝑋))(+g‘𝑀)(𝐾 · 𝑌)) ∈ 𝐺))) |
52 | 41, 49, 51 | 3imtr4d 293 |
1
⊢ (𝜑 → (𝑋 ∼ 𝑌 → (𝐾 · 𝑋) ∼ (𝐾 · 𝑌))) |