Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqgvscpbl Structured version   Visualization version   GIF version

Theorem eqgvscpbl 30951
 Description: The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
Assertion
Ref Expression
eqgvscpbl (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))

Proof of Theorem eqgvscpbl
StepHypRef Expression
1 eqgvscpbl.m . . . . . 6 (𝜑𝑀 ∈ LMod)
21adantr 484 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑀 ∈ LMod)
3 eqgvscpbl.k . . . . . 6 (𝜑𝐾𝑆)
43adantr 484 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐾𝑆)
5 simpr1 1191 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑋𝐵)
6 eqgvscpbl.v . . . . . 6 𝐵 = (Base‘𝑀)
7 eqid 2822 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
8 eqgvscpbl.p . . . . . 6 · = ( ·𝑠𝑀)
9 eqgvscpbl.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑀))
106, 7, 8, 9lmodvscl 19642 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
112, 4, 5, 10syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑋) ∈ 𝐵)
12 simpr2 1192 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑌𝐵)
136, 7, 8, 9lmodvscl 19642 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑌𝐵) → (𝐾 · 𝑌) ∈ 𝐵)
142, 4, 12, 13syl3anc 1368 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑌) ∈ 𝐵)
151ad2antrr 725 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ LMod)
163ad2antrr 725 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝐾𝑆)
17 lmodgrp 19632 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
1815, 17syl 17 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ Grp)
19 simplr 768 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑋𝐵)
20 eqid 2822 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
216, 20grpinvcl 18142 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
2218, 19, 21syl2anc 587 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
23 simpr 488 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑌𝐵)
24 eqid 2822 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
256, 24, 7, 8, 9lmodvsdi 19648 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝐾𝑆 ∧ ((invg𝑀)‘𝑋) ∈ 𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
2615, 16, 22, 23, 25syl13anc 1369 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
276, 7, 8, 20, 9lmodvsinv2 19800 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2815, 16, 19, 27syl3anc 1368 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2928oveq1d 7155 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3026, 29eqtrd 2857 . . . . . . 7 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3130anasss 470 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
32313adantr3 1168 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
33 eqgvscpbl.g . . . . . . 7 (𝜑𝐺 ∈ (LSubSp‘𝑀))
3433adantr 484 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐺 ∈ (LSubSp‘𝑀))
35 simpr3 1193 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)
36 eqid 2822 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
377, 8, 9, 36lssvscl 19718 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) ∧ (𝐾𝑆 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
382, 34, 4, 35, 37syl22anc 837 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
3932, 38eqeltrrd 2915 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)
4011, 14, 393jca 1125 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺))
4140ex 416 . 2 (𝜑 → ((𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
421, 17syl 17 . . 3 (𝜑𝑀 ∈ Grp)
4336lsssubg 19720 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
441, 33, 43syl2anc 587 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
456subgss 18271 . . . 4 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝐵)
4644, 45syl 17 . . 3 (𝜑𝐺𝐵)
47 eqgvscpbl.e . . . 4 = (𝑀 ~QG 𝐺)
486, 20, 24, 47eqgval 18320 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
4942, 46, 48syl2anc 587 . 2 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
506, 20, 24, 47eqgval 18320 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5142, 46, 50syl2anc 587 . 2 (𝜑 → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5241, 49, 513imtr4d 297 1 (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2114   ⊆ wss 3908   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  Scalarcsca 16559   ·𝑠 cvsca 16560  Grpcgrp 18094  invgcminusg 18095  SubGrpcsubg 18264   ~QG cqg 18266  LModclmod 19625  LSubSpclss 19694 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-eqg 18269  df-mgp 19231  df-ur 19243  df-ring 19290  df-lmod 19627  df-lss 19695 This theorem is referenced by:  qusvscpbl  30952
 Copyright terms: Public domain W3C validator