Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqgvscpbl Structured version   Visualization version   GIF version

Theorem eqgvscpbl 31654
Description: The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
Assertion
Ref Expression
eqgvscpbl (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))

Proof of Theorem eqgvscpbl
StepHypRef Expression
1 eqgvscpbl.m . . . . . 6 (𝜑𝑀 ∈ LMod)
21adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑀 ∈ LMod)
3 eqgvscpbl.k . . . . . 6 (𝜑𝐾𝑆)
43adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐾𝑆)
5 simpr1 1193 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑋𝐵)
6 eqgvscpbl.v . . . . . 6 𝐵 = (Base‘𝑀)
7 eqid 2737 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
8 eqgvscpbl.p . . . . . 6 · = ( ·𝑠𝑀)
9 eqgvscpbl.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑀))
106, 7, 8, 9lmodvscl 20212 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
112, 4, 5, 10syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑋) ∈ 𝐵)
12 simpr2 1194 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑌𝐵)
136, 7, 8, 9lmodvscl 20212 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑌𝐵) → (𝐾 · 𝑌) ∈ 𝐵)
142, 4, 12, 13syl3anc 1370 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑌) ∈ 𝐵)
151ad2antrr 723 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ LMod)
163ad2antrr 723 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝐾𝑆)
17 lmodgrp 20202 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
1815, 17syl 17 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ Grp)
19 simplr 766 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑋𝐵)
20 eqid 2737 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
216, 20grpinvcl 18696 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
2218, 19, 21syl2anc 584 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
23 simpr 485 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑌𝐵)
24 eqid 2737 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
256, 24, 7, 8, 9lmodvsdi 20218 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝐾𝑆 ∧ ((invg𝑀)‘𝑋) ∈ 𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
2615, 16, 22, 23, 25syl13anc 1371 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
276, 7, 8, 20, 9lmodvsinv2 20371 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2815, 16, 19, 27syl3anc 1370 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2928oveq1d 7330 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3026, 29eqtrd 2777 . . . . . . 7 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3130anasss 467 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
32313adantr3 1170 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
33 eqgvscpbl.g . . . . . . 7 (𝜑𝐺 ∈ (LSubSp‘𝑀))
3433adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐺 ∈ (LSubSp‘𝑀))
35 simpr3 1195 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)
36 eqid 2737 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
377, 8, 9, 36lssvscl 20289 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) ∧ (𝐾𝑆 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
382, 34, 4, 35, 37syl22anc 836 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
3932, 38eqeltrrd 2839 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)
4011, 14, 393jca 1127 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺))
4140ex 413 . 2 (𝜑 → ((𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
421, 17syl 17 . . 3 (𝜑𝑀 ∈ Grp)
4336lsssubg 20291 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
441, 33, 43syl2anc 584 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
456subgss 18825 . . . 4 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝐵)
4644, 45syl 17 . . 3 (𝜑𝐺𝐵)
47 eqgvscpbl.e . . . 4 = (𝑀 ~QG 𝐺)
486, 20, 24, 47eqgval 18874 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
4942, 46, 48syl2anc 584 . 2 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
506, 20, 24, 47eqgval 18874 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5142, 46, 50syl2anc 584 . 2 (𝜑 → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5241, 49, 513imtr4d 293 1 (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wss 3897   class class class wbr 5087  cfv 6465  (class class class)co 7315  Basecbs 16982  +gcplusg 17032  Scalarcsca 17035   ·𝑠 cvsca 17036  Grpcgrp 18646  invgcminusg 18647  SubGrpcsubg 18818   ~QG cqg 18820  LModclmod 20195  LSubSpclss 20265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-1st 7876  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-2 12109  df-sets 16935  df-slot 16953  df-ndx 16965  df-base 16983  df-ress 17012  df-plusg 17045  df-0g 17222  df-mgm 18396  df-sgrp 18445  df-mnd 18456  df-grp 18649  df-minusg 18650  df-sbg 18651  df-subg 18821  df-eqg 18823  df-mgp 19789  df-ur 19806  df-ring 19853  df-lmod 20197  df-lss 20266
This theorem is referenced by:  qusvscpbl  31655
  Copyright terms: Public domain W3C validator