Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqgvscpbl Structured version   Visualization version   GIF version

Theorem eqgvscpbl 33321
Description: The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
Assertion
Ref Expression
eqgvscpbl (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))

Proof of Theorem eqgvscpbl
StepHypRef Expression
1 eqgvscpbl.m . . . . . 6 (𝜑𝑀 ∈ LMod)
21adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑀 ∈ LMod)
3 eqgvscpbl.k . . . . . 6 (𝜑𝐾𝑆)
43adantr 480 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐾𝑆)
5 simpr1 1195 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑋𝐵)
6 eqgvscpbl.v . . . . . 6 𝐵 = (Base‘𝑀)
7 eqid 2729 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
8 eqgvscpbl.p . . . . . 6 · = ( ·𝑠𝑀)
9 eqgvscpbl.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑀))
106, 7, 8, 9lmodvscl 20784 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
112, 4, 5, 10syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑋) ∈ 𝐵)
12 simpr2 1196 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑌𝐵)
136, 7, 8, 9lmodvscl 20784 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑌𝐵) → (𝐾 · 𝑌) ∈ 𝐵)
142, 4, 12, 13syl3anc 1373 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑌) ∈ 𝐵)
151ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ LMod)
163ad2antrr 726 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝐾𝑆)
17 lmodgrp 20773 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
1815, 17syl 17 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ Grp)
19 simplr 768 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑋𝐵)
20 eqid 2729 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
216, 20grpinvcl 18919 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
2218, 19, 21syl2anc 584 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
23 simpr 484 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑌𝐵)
24 eqid 2729 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
256, 24, 7, 8, 9lmodvsdi 20791 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝐾𝑆 ∧ ((invg𝑀)‘𝑋) ∈ 𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
2615, 16, 22, 23, 25syl13anc 1374 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
276, 7, 8, 20, 9lmodvsinv2 20944 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2815, 16, 19, 27syl3anc 1373 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2928oveq1d 7402 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3026, 29eqtrd 2764 . . . . . . 7 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3130anasss 466 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
32313adantr3 1172 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
33 eqgvscpbl.g . . . . . . 7 (𝜑𝐺 ∈ (LSubSp‘𝑀))
3433adantr 480 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐺 ∈ (LSubSp‘𝑀))
35 simpr3 1197 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)
36 eqid 2729 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
377, 8, 9, 36lssvscl 20861 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) ∧ (𝐾𝑆 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
382, 34, 4, 35, 37syl22anc 838 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
3932, 38eqeltrrd 2829 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)
4011, 14, 393jca 1128 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺))
4140ex 412 . 2 (𝜑 → ((𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
421, 17syl 17 . . 3 (𝜑𝑀 ∈ Grp)
4336lsssubg 20863 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
441, 33, 43syl2anc 584 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
456subgss 19059 . . . 4 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝐵)
4644, 45syl 17 . . 3 (𝜑𝐺𝐵)
47 eqgvscpbl.e . . . 4 = (𝑀 ~QG 𝐺)
486, 20, 24, 47eqgval 19109 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
4942, 46, 48syl2anc 584 . 2 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
506, 20, 24, 47eqgval 19109 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5142, 46, 50syl2anc 584 . 2 (𝜑 → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5241, 49, 513imtr4d 294 1 (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3914   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  Scalarcsca 17223   ·𝑠 cvsca 17224  Grpcgrp 18865  invgcminusg 18866  SubGrpcsubg 19052   ~QG cqg 19054  LModclmod 20766  LSubSpclss 20837
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-eqg 19057  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-lmod 20768  df-lss 20838
This theorem is referenced by:  qusvscpbl  33322
  Copyright terms: Public domain W3C validator