Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqgvscpbl Structured version   Visualization version   GIF version

Theorem eqgvscpbl 32142
Description: The left coset equivalence relation is compatible with the scalar multiplication operation. (Contributed by Thierry Arnoux, 18-May-2023.)
Hypotheses
Ref Expression
eqgvscpbl.v 𝐵 = (Base‘𝑀)
eqgvscpbl.e = (𝑀 ~QG 𝐺)
eqgvscpbl.s 𝑆 = (Base‘(Scalar‘𝑀))
eqgvscpbl.p · = ( ·𝑠𝑀)
eqgvscpbl.m (𝜑𝑀 ∈ LMod)
eqgvscpbl.g (𝜑𝐺 ∈ (LSubSp‘𝑀))
eqgvscpbl.k (𝜑𝐾𝑆)
Assertion
Ref Expression
eqgvscpbl (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))

Proof of Theorem eqgvscpbl
StepHypRef Expression
1 eqgvscpbl.m . . . . . 6 (𝜑𝑀 ∈ LMod)
21adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑀 ∈ LMod)
3 eqgvscpbl.k . . . . . 6 (𝜑𝐾𝑆)
43adantr 481 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐾𝑆)
5 simpr1 1194 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑋𝐵)
6 eqgvscpbl.v . . . . . 6 𝐵 = (Base‘𝑀)
7 eqid 2736 . . . . . 6 (Scalar‘𝑀) = (Scalar‘𝑀)
8 eqgvscpbl.p . . . . . 6 · = ( ·𝑠𝑀)
9 eqgvscpbl.s . . . . . 6 𝑆 = (Base‘(Scalar‘𝑀))
106, 7, 8, 9lmodvscl 20339 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · 𝑋) ∈ 𝐵)
112, 4, 5, 10syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑋) ∈ 𝐵)
12 simpr2 1195 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝑌𝐵)
136, 7, 8, 9lmodvscl 20339 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑌𝐵) → (𝐾 · 𝑌) ∈ 𝐵)
142, 4, 12, 13syl3anc 1371 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · 𝑌) ∈ 𝐵)
151ad2antrr 724 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ LMod)
163ad2antrr 724 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝐾𝑆)
17 lmodgrp 20329 . . . . . . . . . . 11 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
1815, 17syl 17 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑀 ∈ Grp)
19 simplr 767 . . . . . . . . . 10 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑋𝐵)
20 eqid 2736 . . . . . . . . . . 11 (invg𝑀) = (invg𝑀)
216, 20grpinvcl 18798 . . . . . . . . . 10 ((𝑀 ∈ Grp ∧ 𝑋𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
2218, 19, 21syl2anc 584 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((invg𝑀)‘𝑋) ∈ 𝐵)
23 simpr 485 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → 𝑌𝐵)
24 eqid 2736 . . . . . . . . . 10 (+g𝑀) = (+g𝑀)
256, 24, 7, 8, 9lmodvsdi 20345 . . . . . . . . 9 ((𝑀 ∈ LMod ∧ (𝐾𝑆 ∧ ((invg𝑀)‘𝑋) ∈ 𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
2615, 16, 22, 23, 25syl13anc 1372 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)))
276, 7, 8, 20, 9lmodvsinv2 20498 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝐾𝑆𝑋𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2815, 16, 19, 27syl3anc 1371 . . . . . . . . 9 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · ((invg𝑀)‘𝑋)) = ((invg𝑀)‘(𝐾 · 𝑋)))
2928oveq1d 7372 . . . . . . . 8 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → ((𝐾 · ((invg𝑀)‘𝑋))(+g𝑀)(𝐾 · 𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3026, 29eqtrd 2776 . . . . . . 7 (((𝜑𝑋𝐵) ∧ 𝑌𝐵) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
3130anasss 467 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
32313adantr3 1171 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) = (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)))
33 eqgvscpbl.g . . . . . . 7 (𝜑𝐺 ∈ (LSubSp‘𝑀))
3433adantr 481 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → 𝐺 ∈ (LSubSp‘𝑀))
35 simpr3 1196 . . . . . 6 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)
36 eqid 2736 . . . . . . 7 (LSubSp‘𝑀) = (LSubSp‘𝑀)
377, 8, 9, 36lssvscl 20416 . . . . . 6 (((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) ∧ (𝐾𝑆 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
382, 34, 4, 35, 37syl22anc 837 . . . . 5 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (𝐾 · (((invg𝑀)‘𝑋)(+g𝑀)𝑌)) ∈ 𝐺)
3932, 38eqeltrrd 2839 . . . 4 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)
4011, 14, 393jca 1128 . . 3 ((𝜑 ∧ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺))
4140ex 413 . 2 (𝜑 → ((𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺) → ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
421, 17syl 17 . . 3 (𝜑𝑀 ∈ Grp)
4336lsssubg 20418 . . . . 5 ((𝑀 ∈ LMod ∧ 𝐺 ∈ (LSubSp‘𝑀)) → 𝐺 ∈ (SubGrp‘𝑀))
441, 33, 43syl2anc 584 . . . 4 (𝜑𝐺 ∈ (SubGrp‘𝑀))
456subgss 18929 . . . 4 (𝐺 ∈ (SubGrp‘𝑀) → 𝐺𝐵)
4644, 45syl 17 . . 3 (𝜑𝐺𝐵)
47 eqgvscpbl.e . . . 4 = (𝑀 ~QG 𝐺)
486, 20, 24, 47eqgval 18979 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
4942, 46, 48syl2anc 584 . 2 (𝜑 → (𝑋 𝑌 ↔ (𝑋𝐵𝑌𝐵 ∧ (((invg𝑀)‘𝑋)(+g𝑀)𝑌) ∈ 𝐺)))
506, 20, 24, 47eqgval 18979 . . 3 ((𝑀 ∈ Grp ∧ 𝐺𝐵) → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5142, 46, 50syl2anc 584 . 2 (𝜑 → ((𝐾 · 𝑋) (𝐾 · 𝑌) ↔ ((𝐾 · 𝑋) ∈ 𝐵 ∧ (𝐾 · 𝑌) ∈ 𝐵 ∧ (((invg𝑀)‘(𝐾 · 𝑋))(+g𝑀)(𝐾 · 𝑌)) ∈ 𝐺)))
5241, 49, 513imtr4d 293 1 (𝜑 → (𝑋 𝑌 → (𝐾 · 𝑋) (𝐾 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910   class class class wbr 5105  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Scalarcsca 17136   ·𝑠 cvsca 17137  Grpcgrp 18748  invgcminusg 18749  SubGrpcsubg 18922   ~QG cqg 18924  LModclmod 20322  LSubSpclss 20392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-eqg 18927  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lss 20393
This theorem is referenced by:  qusvscpbl  32143
  Copyright terms: Public domain W3C validator