MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsinv2 Structured version   Visualization version   GIF version

Theorem lmodvsinv2 19802
Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
lmodvsinv2.b 𝐵 = (Base‘𝑊)
lmodvsinv2.f 𝐹 = (Scalar‘𝑊)
lmodvsinv2.s · = ( ·𝑠𝑊)
lmodvsinv2.n 𝑁 = (invg𝑊)
lmodvsinv2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsinv2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))

Proof of Theorem lmodvsinv2
StepHypRef Expression
1 simp1 1133 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ LMod)
2 lmodgrp 19634 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ Grp)
4 simp3 1135 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑋𝐵)
5 lmodvsinv2.b . . . . . . 7 𝐵 = (Base‘𝑊)
6 eqid 2798 . . . . . . 7 (+g𝑊) = (+g𝑊)
7 eqid 2798 . . . . . . 7 (0g𝑊) = (0g𝑊)
8 lmodvsinv2.n . . . . . . 7 𝑁 = (invg𝑊)
95, 6, 7, 8grprinv 18145 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
103, 4, 9syl2anc 587 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
1110oveq2d 7151 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = (𝑅 · (0g𝑊)))
12 simp2 1134 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑅𝐾)
135, 8grpinvcl 18143 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
143, 4, 13syl2anc 587 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
15 lmodvsinv2.f . . . . . 6 𝐹 = (Scalar‘𝑊)
16 lmodvsinv2.s . . . . . 6 · = ( ·𝑠𝑊)
17 lmodvsinv2.k . . . . . 6 𝐾 = (Base‘𝐹)
185, 6, 15, 16, 17lmodvsdi 19650 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
191, 12, 4, 14, 18syl13anc 1369 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
2015, 16, 17, 7lmodvs0 19661 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
211, 12, 20syl2anc 587 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (0g𝑊)) = (0g𝑊))
2211, 19, 213eqtr3d 2841 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊))
235, 15, 16, 17lmodvscl 19644 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · 𝑋) ∈ 𝐵)
245, 15, 16, 17lmodvscl 19644 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝑁𝑋) ∈ 𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
251, 12, 14, 24syl3anc 1368 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
265, 6, 7, 8grpinvid1 18146 . . . 4 ((𝑊 ∈ Grp ∧ (𝑅 · 𝑋) ∈ 𝐵 ∧ (𝑅 · (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
273, 23, 25, 26syl3anc 1368 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
2822, 27mpbird 260 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)))
2928eqcomd 2804 1 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1084   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  Grpcgrp 18095  invgcminusg 18096  LModclmod 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-mgp 19233  df-ring 19292  df-lmod 19629
This theorem is referenced by:  invlmhm  19807  eqgvscpbl  30970
  Copyright terms: Public domain W3C validator