![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvsinv2 | Structured version Visualization version GIF version |
Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
lmodvsinv2.b | ⊢ 𝐵 = (Base‘𝑊) |
lmodvsinv2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvsinv2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvsinv2.n | ⊢ 𝑁 = (invg‘𝑊) |
lmodvsinv2.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
lmodvsinv2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1172 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ LMod) | |
2 | lmodgrp 19225 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ Grp) |
4 | simp3 1174 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
5 | lmodvsinv2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
6 | eqid 2824 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
7 | eqid 2824 | . . . . . . 7 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
8 | lmodvsinv2.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑊) | |
9 | 5, 6, 7, 8 | grprinv 17822 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝑊)(𝑁‘𝑋)) = (0g‘𝑊)) |
10 | 3, 4, 9 | syl2anc 581 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝑊)(𝑁‘𝑋)) = (0g‘𝑊)) |
11 | 10 | oveq2d 6920 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑋(+g‘𝑊)(𝑁‘𝑋))) = (𝑅 · (0g‘𝑊))) |
12 | simp2 1173 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ 𝐾) | |
13 | 5, 8 | grpinvcl 17820 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
14 | 3, 4, 13 | syl2anc 581 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
15 | lmodvsinv2.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
16 | lmodvsinv2.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
17 | lmodvsinv2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
18 | 5, 6, 15, 16, 17 | lmodvsdi 19241 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) → (𝑅 · (𝑋(+g‘𝑊)(𝑁‘𝑋))) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋)))) |
19 | 1, 12, 4, 14, 18 | syl13anc 1497 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑋(+g‘𝑊)(𝑁‘𝑋))) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋)))) |
20 | 15, 16, 17, 7 | lmodvs0 19252 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾) → (𝑅 · (0g‘𝑊)) = (0g‘𝑊)) |
21 | 1, 12, 20 | syl2anc 581 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (0g‘𝑊)) = (0g‘𝑊)) |
22 | 11, 19, 21 | 3eqtr3d 2868 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋))) = (0g‘𝑊)) |
23 | 5, 15, 16, 17 | lmodvscl 19235 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · 𝑋) ∈ 𝐵) |
24 | 5, 15, 16, 17 | lmodvscl 19235 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ (𝑁‘𝑋) ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) ∈ 𝐵) |
25 | 1, 12, 14, 24 | syl3anc 1496 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) ∈ 𝐵) |
26 | 5, 6, 7, 8 | grpinvid1 17823 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ (𝑅 · 𝑋) ∈ 𝐵 ∧ (𝑅 · (𝑁‘𝑋)) ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁‘𝑋)) ↔ ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋))) = (0g‘𝑊))) |
27 | 3, 23, 25, 26 | syl3anc 1496 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁‘𝑋)) ↔ ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋))) = (0g‘𝑊))) |
28 | 22, 27 | mpbird 249 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁‘𝑋))) |
29 | 28 | eqcomd 2830 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 ‘cfv 6122 (class class class)co 6904 Basecbs 16221 +gcplusg 16304 Scalarcsca 16307 ·𝑠 cvsca 16308 0gc0g 16452 Grpcgrp 17775 invgcminusg 17776 LModclmod 19218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-rep 4993 ax-sep 5004 ax-nul 5012 ax-pow 5064 ax-pr 5126 ax-un 7208 ax-cnex 10307 ax-resscn 10308 ax-1cn 10309 ax-icn 10310 ax-addcl 10311 ax-addrcl 10312 ax-mulcl 10313 ax-mulrcl 10314 ax-mulcom 10315 ax-addass 10316 ax-mulass 10317 ax-distr 10318 ax-i2m1 10319 ax-1ne0 10320 ax-1rid 10321 ax-rnegex 10322 ax-rrecex 10323 ax-cnre 10324 ax-pre-lttri 10325 ax-pre-lttrn 10326 ax-pre-ltadd 10327 ax-pre-mulgt0 10328 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ne 2999 df-nel 3102 df-ral 3121 df-rex 3122 df-reu 3123 df-rmo 3124 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-pss 3813 df-nul 4144 df-if 4306 df-pw 4379 df-sn 4397 df-pr 4399 df-tp 4401 df-op 4403 df-uni 4658 df-iun 4741 df-br 4873 df-opab 4935 df-mpt 4952 df-tr 4975 df-id 5249 df-eprel 5254 df-po 5262 df-so 5263 df-fr 5300 df-we 5302 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-res 5353 df-ima 5354 df-pred 5919 df-ord 5965 df-on 5966 df-lim 5967 df-suc 5968 df-iota 6085 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-fv 6130 df-riota 6865 df-ov 6907 df-oprab 6908 df-mpt2 6909 df-om 7326 df-wrecs 7671 df-recs 7733 df-rdg 7771 df-er 8008 df-en 8222 df-dom 8223 df-sdom 8224 df-pnf 10392 df-mnf 10393 df-xr 10394 df-ltxr 10395 df-le 10396 df-sub 10586 df-neg 10587 df-nn 11350 df-2 11413 df-ndx 16224 df-slot 16225 df-base 16227 df-sets 16228 df-plusg 16317 df-0g 16454 df-mgm 17594 df-sgrp 17636 df-mnd 17647 df-grp 17778 df-minusg 17779 df-mgp 18843 df-ring 18902 df-lmod 19220 |
This theorem is referenced by: invlmhm 19400 |
Copyright terms: Public domain | W3C validator |