MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsinv2 Structured version   Visualization version   GIF version

Theorem lmodvsinv2 20214
Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
lmodvsinv2.b 𝐵 = (Base‘𝑊)
lmodvsinv2.f 𝐹 = (Scalar‘𝑊)
lmodvsinv2.s · = ( ·𝑠𝑊)
lmodvsinv2.n 𝑁 = (invg𝑊)
lmodvsinv2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsinv2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))

Proof of Theorem lmodvsinv2
StepHypRef Expression
1 simp1 1134 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ LMod)
2 lmodgrp 20045 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ Grp)
4 simp3 1136 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑋𝐵)
5 lmodvsinv2.b . . . . . . 7 𝐵 = (Base‘𝑊)
6 eqid 2738 . . . . . . 7 (+g𝑊) = (+g𝑊)
7 eqid 2738 . . . . . . 7 (0g𝑊) = (0g𝑊)
8 lmodvsinv2.n . . . . . . 7 𝑁 = (invg𝑊)
95, 6, 7, 8grprinv 18544 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
103, 4, 9syl2anc 583 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
1110oveq2d 7271 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = (𝑅 · (0g𝑊)))
12 simp2 1135 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑅𝐾)
135, 8grpinvcl 18542 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
143, 4, 13syl2anc 583 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
15 lmodvsinv2.f . . . . . 6 𝐹 = (Scalar‘𝑊)
16 lmodvsinv2.s . . . . . 6 · = ( ·𝑠𝑊)
17 lmodvsinv2.k . . . . . 6 𝐾 = (Base‘𝐹)
185, 6, 15, 16, 17lmodvsdi 20061 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
191, 12, 4, 14, 18syl13anc 1370 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
2015, 16, 17, 7lmodvs0 20072 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
211, 12, 20syl2anc 583 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (0g𝑊)) = (0g𝑊))
2211, 19, 213eqtr3d 2786 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊))
235, 15, 16, 17lmodvscl 20055 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · 𝑋) ∈ 𝐵)
245, 15, 16, 17lmodvscl 20055 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝑁𝑋) ∈ 𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
251, 12, 14, 24syl3anc 1369 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
265, 6, 7, 8grpinvid1 18545 . . . 4 ((𝑊 ∈ Grp ∧ (𝑅 · 𝑋) ∈ 𝐵 ∧ (𝑅 · (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
273, 23, 25, 26syl3anc 1369 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
2822, 27mpbird 256 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)))
2928eqcomd 2744 1 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  LModclmod 20038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-mgp 19636  df-ring 19700  df-lmod 20040
This theorem is referenced by:  invlmhm  20219  eqgvscpbl  31452
  Copyright terms: Public domain W3C validator