MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvsinv2 Structured version   Visualization version   GIF version

Theorem lmodvsinv2 19803
Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
lmodvsinv2.b 𝐵 = (Base‘𝑊)
lmodvsinv2.f 𝐹 = (Scalar‘𝑊)
lmodvsinv2.s · = ( ·𝑠𝑊)
lmodvsinv2.n 𝑁 = (invg𝑊)
lmodvsinv2.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
lmodvsinv2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))

Proof of Theorem lmodvsinv2
StepHypRef Expression
1 simp1 1132 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ LMod)
2 lmodgrp 19635 . . . . . . 7 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
31, 2syl 17 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑊 ∈ Grp)
4 simp3 1134 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑋𝐵)
5 lmodvsinv2.b . . . . . . 7 𝐵 = (Base‘𝑊)
6 eqid 2821 . . . . . . 7 (+g𝑊) = (+g𝑊)
7 eqid 2821 . . . . . . 7 (0g𝑊) = (0g𝑊)
8 lmodvsinv2.n . . . . . . 7 𝑁 = (invg𝑊)
95, 6, 7, 8grprinv 18147 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
103, 4, 9syl2anc 586 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑋(+g𝑊)(𝑁𝑋)) = (0g𝑊))
1110oveq2d 7166 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = (𝑅 · (0g𝑊)))
12 simp2 1133 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → 𝑅𝐾)
135, 8grpinvcl 18145 . . . . . 6 ((𝑊 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
143, 4, 13syl2anc 586 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁𝑋) ∈ 𝐵)
15 lmodvsinv2.f . . . . . 6 𝐹 = (Scalar‘𝑊)
16 lmodvsinv2.s . . . . . 6 · = ( ·𝑠𝑊)
17 lmodvsinv2.k . . . . . 6 𝐾 = (Base‘𝐹)
185, 6, 15, 16, 17lmodvsdi 19651 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑅𝐾𝑋𝐵 ∧ (𝑁𝑋) ∈ 𝐵)) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
191, 12, 4, 14, 18syl13anc 1368 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑋(+g𝑊)(𝑁𝑋))) = ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))))
2015, 16, 17, 7lmodvs0 19662 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾) → (𝑅 · (0g𝑊)) = (0g𝑊))
211, 12, 20syl2anc 586 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (0g𝑊)) = (0g𝑊))
2211, 19, 213eqtr3d 2864 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊))
235, 15, 16, 17lmodvscl 19645 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · 𝑋) ∈ 𝐵)
245, 15, 16, 17lmodvscl 19645 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑅𝐾 ∧ (𝑁𝑋) ∈ 𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
251, 12, 14, 24syl3anc 1367 . . . 4 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) ∈ 𝐵)
265, 6, 7, 8grpinvid1 18148 . . . 4 ((𝑊 ∈ Grp ∧ (𝑅 · 𝑋) ∈ 𝐵 ∧ (𝑅 · (𝑁𝑋)) ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
273, 23, 25, 26syl3anc 1367 . . 3 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)) ↔ ((𝑅 · 𝑋)(+g𝑊)(𝑅 · (𝑁𝑋))) = (0g𝑊)))
2822, 27mpbird 259 . 2 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁𝑋)))
2928eqcomd 2827 1 ((𝑊 ∈ LMod ∧ 𝑅𝐾𝑋𝐵) → (𝑅 · (𝑁𝑋)) = (𝑁‘(𝑅 · 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1083   = wceq 1533  wcel 2110  cfv 6350  (class class class)co 7150  Basecbs 16477  +gcplusg 16559  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707  Grpcgrp 18097  invgcminusg 18098  LModclmod 19628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-mgp 19234  df-ring 19293  df-lmod 19630
This theorem is referenced by:  invlmhm  19808  eqgvscpbl  30914
  Copyright terms: Public domain W3C validator