| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvsinv2 | Structured version Visualization version GIF version | ||
| Description: Multiplying a negated vector by a scalar. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| lmodvsinv2.b | ⊢ 𝐵 = (Base‘𝑊) |
| lmodvsinv2.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvsinv2.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvsinv2.n | ⊢ 𝑁 = (invg‘𝑊) |
| lmodvsinv2.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvsinv2 | ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ LMod) | |
| 2 | lmodgrp 20773 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝑊 ∈ Grp) |
| 4 | simp3 1138 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 5 | lmodvsinv2.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑊) | |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (0g‘𝑊) = (0g‘𝑊) | |
| 8 | lmodvsinv2.n | . . . . . . 7 ⊢ 𝑁 = (invg‘𝑊) | |
| 9 | 5, 6, 7, 8 | grprinv 18922 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝑊)(𝑁‘𝑋)) = (0g‘𝑊)) |
| 10 | 3, 4, 9 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑋(+g‘𝑊)(𝑁‘𝑋)) = (0g‘𝑊)) |
| 11 | 10 | oveq2d 7403 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑋(+g‘𝑊)(𝑁‘𝑋))) = (𝑅 · (0g‘𝑊))) |
| 12 | simp2 1137 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ 𝐾) | |
| 13 | 5, 8 | grpinvcl 18919 | . . . . . 6 ⊢ ((𝑊 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 14 | 3, 4, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ 𝐵) |
| 15 | lmodvsinv2.f | . . . . . 6 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 16 | lmodvsinv2.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 17 | lmodvsinv2.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝐹) | |
| 18 | 5, 6, 15, 16, 17 | lmodvsdi 20791 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵 ∧ (𝑁‘𝑋) ∈ 𝐵)) → (𝑅 · (𝑋(+g‘𝑊)(𝑁‘𝑋))) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋)))) |
| 19 | 1, 12, 4, 14, 18 | syl13anc 1374 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑋(+g‘𝑊)(𝑁‘𝑋))) = ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋)))) |
| 20 | 15, 16, 17, 7 | lmodvs0 20802 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾) → (𝑅 · (0g‘𝑊)) = (0g‘𝑊)) |
| 21 | 1, 12, 20 | syl2anc 584 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (0g‘𝑊)) = (0g‘𝑊)) |
| 22 | 11, 19, 21 | 3eqtr3d 2772 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋))) = (0g‘𝑊)) |
| 23 | 5, 15, 16, 17 | lmodvscl 20784 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · 𝑋) ∈ 𝐵) |
| 24 | 5, 15, 16, 17 | lmodvscl 20784 | . . . . 5 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ (𝑁‘𝑋) ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) ∈ 𝐵) |
| 25 | 1, 12, 14, 24 | syl3anc 1373 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) ∈ 𝐵) |
| 26 | 5, 6, 7, 8 | grpinvid1 18923 | . . . 4 ⊢ ((𝑊 ∈ Grp ∧ (𝑅 · 𝑋) ∈ 𝐵 ∧ (𝑅 · (𝑁‘𝑋)) ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁‘𝑋)) ↔ ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋))) = (0g‘𝑊))) |
| 27 | 3, 23, 25, 26 | syl3anc 1373 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → ((𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁‘𝑋)) ↔ ((𝑅 · 𝑋)(+g‘𝑊)(𝑅 · (𝑁‘𝑋))) = (0g‘𝑊))) |
| 28 | 22, 27 | mpbird 257 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑁‘(𝑅 · 𝑋)) = (𝑅 · (𝑁‘𝑋))) |
| 29 | 28 | eqcomd 2735 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝐵) → (𝑅 · (𝑁‘𝑋)) = (𝑁‘(𝑅 · 𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 Scalarcsca 17223 ·𝑠 cvsca 17224 0gc0g 17402 Grpcgrp 18865 invgcminusg 18866 LModclmod 20766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-lmod 20768 |
| This theorem is referenced by: invlmhm 20949 eqgvscpbl 33321 |
| Copyright terms: Public domain | W3C validator |