MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss3 Structured version   Visualization version   GIF version

Theorem islss3 19425
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x 𝑋 = (𝑊s 𝑈)
islss3.v 𝑉 = (Base‘𝑊)
islss3.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss3 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))

Proof of Theorem islss3
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . . 5 𝑉 = (Base‘𝑊)
2 islss3.s . . . . 5 𝑆 = (LSubSp‘𝑊)
31, 2lssss 19402 . . . 4 (𝑈𝑆𝑈𝑉)
43adantl 482 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈𝑉)
5 islss3.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
65, 1ressbas2 16388 . . . . . 6 (𝑈𝑉𝑈 = (Base‘𝑋))
76adantl 482 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 = (Base‘𝑋))
83, 7sylan2 592 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
9 eqid 2797 . . . . . 6 (+g𝑊) = (+g𝑊)
105, 9ressplusg 16445 . . . . 5 (𝑈𝑆 → (+g𝑊) = (+g𝑋))
1110adantl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g𝑊) = (+g𝑋))
12 eqid 2797 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
135, 12resssca 16483 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413adantl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
15 eqid 2797 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
165, 15ressvsca 16484 . . . . 5 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
1716adantl 482 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
18 eqidd 2798 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
19 eqidd 2798 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)))
20 eqidd 2798 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)))
21 eqidd 2798 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)))
2212lmodring 19336 . . . . 5 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
2322adantr 481 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ Ring)
242lsssubg 19423 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
255subggrp 18040 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → 𝑋 ∈ Grp)
2624, 25syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ Grp)
27 eqid 2797 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2812, 15, 27, 2lssvscl 19421 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑈)
29283impb 1108 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑈)
30 simpll 763 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑊 ∈ LMod)
31 simpr1 1187 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
323ad2antlr 723 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑈𝑉)
33 simpr2 1188 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
3432, 33sseldd 3896 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑉)
35 simpr3 1189 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
3632, 35sseldd 3896 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑉)
371, 9, 12, 15, 27lmodvsdi 19351 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)(𝑎(+g𝑊)𝑏)) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)(𝑥( ·𝑠𝑊)𝑏)))
3830, 31, 34, 36, 37syl13anc 1365 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝑊)(𝑎(+g𝑊)𝑏)) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)(𝑥( ·𝑠𝑊)𝑏)))
39 simpll 763 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑊 ∈ LMod)
40 simpr1 1187 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
41 simpr2 1188 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
423ad2antlr 723 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑈𝑉)
43 simpr3 1189 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑏𝑈)
4442, 43sseldd 3896 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑏𝑉)
45 eqid 2797 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
461, 9, 12, 15, 27, 45lmodvsdir 19352 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑉)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑏)(+g𝑊)(𝑎( ·𝑠𝑊)𝑏)))
4739, 40, 41, 44, 46syl13anc 1365 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑏)(+g𝑊)(𝑎( ·𝑠𝑊)𝑏)))
48 eqid 2797 . . . . . 6 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
491, 12, 15, 27, 48lmodvsass 19353 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑉)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = (𝑥( ·𝑠𝑊)(𝑎( ·𝑠𝑊)𝑏)))
5039, 40, 41, 44, 49syl13anc 1365 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = (𝑥( ·𝑠𝑊)(𝑎( ·𝑠𝑊)𝑏)))
514sselda 3895 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → 𝑥𝑉)
52 eqid 2797 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
531, 12, 15, 52lmodvs1 19356 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5453adantlr 711 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5551, 54syldan 591 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
568, 11, 14, 17, 18, 19, 20, 21, 23, 26, 29, 38, 47, 50, 55islmodd 19334 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
574, 56jca 512 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈𝑉𝑋 ∈ LMod))
58 simprl 767 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈𝑉)
5958, 6syl 17 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈 = (Base‘𝑋))
60 fvex 6558 . . . . . . 7 (Base‘𝑋) ∈ V
6159, 60syl6eqel 2893 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈 ∈ V)
625, 12resssca 16483 . . . . . 6 (𝑈 ∈ V → (Scalar‘𝑊) = (Scalar‘𝑋))
6361, 62syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Scalar‘𝑊) = (Scalar‘𝑋))
6463eqcomd 2803 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Scalar‘𝑋) = (Scalar‘𝑊))
65 eqidd 2798 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
661a1i 11 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑉 = (Base‘𝑊))
675, 9ressplusg 16445 . . . . . 6 (𝑈 ∈ V → (+g𝑊) = (+g𝑋))
6861, 67syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑊) = (+g𝑋))
6968eqcomd 2803 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑋) = (+g𝑊))
705, 15ressvsca 16484 . . . . . 6 (𝑈 ∈ V → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7161, 70syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7271eqcomd 2803 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ( ·𝑠𝑋) = ( ·𝑠𝑊))
732a1i 11 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑆 = (LSubSp‘𝑊))
7459, 58eqsstrrd 3933 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ⊆ 𝑉)
75 lmodgrp 19335 . . . . . 6 (𝑋 ∈ LMod → 𝑋 ∈ Grp)
7675ad2antll 725 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑋 ∈ Grp)
77 eqid 2797 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
7877grpbn0 17894 . . . . 5 (𝑋 ∈ Grp → (Base‘𝑋) ≠ ∅)
7976, 78syl 17 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ≠ ∅)
80 eqid 2797 . . . . . . 7 (LSubSp‘𝑋) = (LSubSp‘𝑋)
8177, 80lss1 19404 . . . . . 6 (𝑋 ∈ LMod → (Base‘𝑋) ∈ (LSubSp‘𝑋))
8281ad2antll 725 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ∈ (LSubSp‘𝑋))
83 eqid 2797 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
84 eqid 2797 . . . . . 6 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
85 eqid 2797 . . . . . 6 (+g𝑋) = (+g𝑋)
86 eqid 2797 . . . . . 6 ( ·𝑠𝑋) = ( ·𝑠𝑋)
8783, 84, 85, 86, 80lsscl 19408 . . . . 5 (((Base‘𝑋) ∈ (LSubSp‘𝑋) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠𝑋)𝑎)(+g𝑋)𝑏) ∈ (Base‘𝑋))
8882, 87sylan 580 . . . 4 (((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠𝑋)𝑎)(+g𝑋)𝑏) ∈ (Base‘𝑋))
8964, 65, 66, 69, 72, 73, 74, 79, 88islssd 19401 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ∈ 𝑆)
9059, 89eqeltrd 2885 . 2 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈𝑆)
9157, 90impbida 797 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080   = wceq 1525  wcel 2083  wne 2986  Vcvv 3440  wss 3865  c0 4217  cfv 6232  (class class class)co 7023  Basecbs 16316  s cress 16317  +gcplusg 16398  .rcmulr 16399  Scalarcsca 16401   ·𝑠 cvsca 16402  Grpcgrp 17865  SubGrpcsubg 18031  1rcur 18945  Ringcrg 18991  LModclmod 19328  LSubSpclss 19397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-ndx 16319  df-slot 16320  df-base 16322  df-sets 16323  df-ress 16324  df-plusg 16411  df-sca 16414  df-vsca 16415  df-0g 16548  df-mgm 17685  df-sgrp 17727  df-mnd 17738  df-grp 17868  df-minusg 17869  df-sbg 17870  df-subg 18034  df-mgp 18934  df-ur 18946  df-ring 18993  df-lmod 19330  df-lss 19398
This theorem is referenced by:  lsslmod  19426  lsslss  19427  issubassa  19790
  Copyright terms: Public domain W3C validator