MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islss3 Structured version   Visualization version   GIF version

Theorem islss3 19996
Description: A linear subspace of a module is a subset which is a module in its own right. (Contributed by Stefan O'Rear, 6-Dec-2014.) (Revised by Mario Carneiro, 30-Apr-2015.)
Hypotheses
Ref Expression
islss3.x 𝑋 = (𝑊s 𝑈)
islss3.v 𝑉 = (Base‘𝑊)
islss3.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
islss3 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))

Proof of Theorem islss3
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islss3.v . . . . 5 𝑉 = (Base‘𝑊)
2 islss3.s . . . . 5 𝑆 = (LSubSp‘𝑊)
31, 2lssss 19973 . . . 4 (𝑈𝑆𝑈𝑉)
43adantl 485 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈𝑉)
5 islss3.x . . . . . . 7 𝑋 = (𝑊s 𝑈)
65, 1ressbas2 16791 . . . . . 6 (𝑈𝑉𝑈 = (Base‘𝑋))
76adantl 485 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → 𝑈 = (Base‘𝑋))
83, 7sylan2 596 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 = (Base‘𝑋))
9 eqid 2737 . . . . . 6 (+g𝑊) = (+g𝑊)
105, 9ressplusg 16834 . . . . 5 (𝑈𝑆 → (+g𝑊) = (+g𝑋))
1110adantl 485 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g𝑊) = (+g𝑋))
12 eqid 2737 . . . . . 6 (Scalar‘𝑊) = (Scalar‘𝑊)
135, 12resssca 16876 . . . . 5 (𝑈𝑆 → (Scalar‘𝑊) = (Scalar‘𝑋))
1413adantl 485 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Scalar‘𝑊) = (Scalar‘𝑋))
15 eqid 2737 . . . . . 6 ( ·𝑠𝑊) = ( ·𝑠𝑊)
165, 15ressvsca 16877 . . . . 5 (𝑈𝑆 → ( ·𝑠𝑊) = ( ·𝑠𝑋))
1716adantl 485 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
18 eqidd 2738 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)))
19 eqidd 2738 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊)))
20 eqidd 2738 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊)))
21 eqidd 2738 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊)))
2212lmodring 19907 . . . . 5 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
2322adantr 484 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (Scalar‘𝑊) ∈ Ring)
242lsssubg 19994 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
255subggrp 18546 . . . . 5 (𝑈 ∈ (SubGrp‘𝑊) → 𝑋 ∈ Grp)
2624, 25syl 17 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ Grp)
27 eqid 2737 . . . . . 6 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2812, 15, 27, 2lssvscl 19992 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈)) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑈)
29283impb 1117 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈) → (𝑥( ·𝑠𝑊)𝑎) ∈ 𝑈)
30 simpll 767 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑊 ∈ LMod)
31 simpr1 1196 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
323ad2antlr 727 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑈𝑉)
33 simpr2 1197 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑈)
3432, 33sseldd 3902 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑎𝑉)
35 simpr3 1198 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑈)
3632, 35sseldd 3902 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → 𝑏𝑉)
371, 9, 12, 15, 27lmodvsdi 19922 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑉𝑏𝑉)) → (𝑥( ·𝑠𝑊)(𝑎(+g𝑊)𝑏)) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)(𝑥( ·𝑠𝑊)𝑏)))
3830, 31, 34, 36, 37syl13anc 1374 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎𝑈𝑏𝑈)) → (𝑥( ·𝑠𝑊)(𝑎(+g𝑊)𝑏)) = ((𝑥( ·𝑠𝑊)𝑎)(+g𝑊)(𝑥( ·𝑠𝑊)𝑏)))
39 simpll 767 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑊 ∈ LMod)
40 simpr1 1196 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑥 ∈ (Base‘(Scalar‘𝑊)))
41 simpr2 1197 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
423ad2antlr 727 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑈𝑉)
43 simpr3 1198 . . . . . 6 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑏𝑈)
4442, 43sseldd 3902 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → 𝑏𝑉)
45 eqid 2737 . . . . . 6 (+g‘(Scalar‘𝑊)) = (+g‘(Scalar‘𝑊))
461, 9, 12, 15, 27, 45lmodvsdir 19923 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑉)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑏)(+g𝑊)(𝑎( ·𝑠𝑊)𝑏)))
4739, 40, 41, 44, 46syl13anc 1374 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → ((𝑥(+g‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = ((𝑥( ·𝑠𝑊)𝑏)(+g𝑊)(𝑎( ·𝑠𝑊)𝑏)))
48 eqid 2737 . . . . . 6 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
491, 12, 15, 27, 48lmodvsass 19924 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑉)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = (𝑥( ·𝑠𝑊)(𝑎( ·𝑠𝑊)𝑏)))
5039, 40, 41, 44, 49syl13anc 1374 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑏𝑈)) → ((𝑥(.r‘(Scalar‘𝑊))𝑎)( ·𝑠𝑊)𝑏) = (𝑥( ·𝑠𝑊)(𝑎( ·𝑠𝑊)𝑏)))
514sselda 3901 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → 𝑥𝑉)
52 eqid 2737 . . . . . . 7 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
531, 12, 15, 52lmodvs1 19927 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑥𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5453adantlr 715 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
5551, 54syldan 594 . . . 4 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ 𝑥𝑈) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑥) = 𝑥)
568, 11, 14, 17, 18, 19, 20, 21, 23, 26, 29, 38, 47, 50, 55islmodd 19905 . . 3 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑋 ∈ LMod)
574, 56jca 515 . 2 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → (𝑈𝑉𝑋 ∈ LMod))
58 simprl 771 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈𝑉)
5958, 6syl 17 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈 = (Base‘𝑋))
60 fvex 6730 . . . . . . 7 (Base‘𝑋) ∈ V
6159, 60eqeltrdi 2846 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈 ∈ V)
625, 12resssca 16876 . . . . . 6 (𝑈 ∈ V → (Scalar‘𝑊) = (Scalar‘𝑋))
6361, 62syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Scalar‘𝑊) = (Scalar‘𝑋))
6463eqcomd 2743 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Scalar‘𝑋) = (Scalar‘𝑊))
65 eqidd 2738 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋)))
661a1i 11 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑉 = (Base‘𝑊))
675, 9ressplusg 16834 . . . . . 6 (𝑈 ∈ V → (+g𝑊) = (+g𝑋))
6861, 67syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑊) = (+g𝑋))
6968eqcomd 2743 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (+g𝑋) = (+g𝑊))
705, 15ressvsca 16877 . . . . . 6 (𝑈 ∈ V → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7161, 70syl 17 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ( ·𝑠𝑊) = ( ·𝑠𝑋))
7271eqcomd 2743 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → ( ·𝑠𝑋) = ( ·𝑠𝑊))
732a1i 11 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑆 = (LSubSp‘𝑊))
7459, 58eqsstrrd 3940 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ⊆ 𝑉)
75 lmodgrp 19906 . . . . . 6 (𝑋 ∈ LMod → 𝑋 ∈ Grp)
7675ad2antll 729 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑋 ∈ Grp)
77 eqid 2737 . . . . . 6 (Base‘𝑋) = (Base‘𝑋)
7877grpbn0 18396 . . . . 5 (𝑋 ∈ Grp → (Base‘𝑋) ≠ ∅)
7976, 78syl 17 . . . 4 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ≠ ∅)
80 eqid 2737 . . . . . . 7 (LSubSp‘𝑋) = (LSubSp‘𝑋)
8177, 80lss1 19975 . . . . . 6 (𝑋 ∈ LMod → (Base‘𝑋) ∈ (LSubSp‘𝑋))
8281ad2antll 729 . . . . 5 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ∈ (LSubSp‘𝑋))
83 eqid 2737 . . . . . 6 (Scalar‘𝑋) = (Scalar‘𝑋)
84 eqid 2737 . . . . . 6 (Base‘(Scalar‘𝑋)) = (Base‘(Scalar‘𝑋))
85 eqid 2737 . . . . . 6 (+g𝑋) = (+g𝑋)
86 eqid 2737 . . . . . 6 ( ·𝑠𝑋) = ( ·𝑠𝑋)
8783, 84, 85, 86, 80lsscl 19979 . . . . 5 (((Base‘𝑋) ∈ (LSubSp‘𝑋) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠𝑋)𝑎)(+g𝑋)𝑏) ∈ (Base‘𝑋))
8882, 87sylan 583 . . . 4 (((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑋)) ∧ 𝑎 ∈ (Base‘𝑋) ∧ 𝑏 ∈ (Base‘𝑋))) → ((𝑥( ·𝑠𝑋)𝑎)(+g𝑋)𝑏) ∈ (Base‘𝑋))
8964, 65, 66, 69, 72, 73, 74, 79, 88islssd 19972 . . 3 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → (Base‘𝑋) ∈ 𝑆)
9059, 89eqeltrd 2838 . 2 ((𝑊 ∈ LMod ∧ (𝑈𝑉𝑋 ∈ LMod)) → 𝑈𝑆)
9157, 90impbida 801 1 (𝑊 ∈ LMod → (𝑈𝑆 ↔ (𝑈𝑉𝑋 ∈ LMod)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  wss 3866  c0 4237  cfv 6380  (class class class)co 7213  Basecbs 16760  s cress 16784  +gcplusg 16802  .rcmulr 16803  Scalarcsca 16805   ·𝑠 cvsca 16806  Grpcgrp 18365  SubGrpcsubg 18537  1rcur 19516  Ringcrg 19562  LModclmod 19899  LSubSpclss 19968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-sca 16818  df-vsca 16819  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-grp 18368  df-minusg 18369  df-sbg 18370  df-subg 18540  df-mgp 19505  df-ur 19517  df-ring 19564  df-lmod 19901  df-lss 19969
This theorem is referenced by:  lsslmod  19997  lsslss  19998  issubassa  20828
  Copyright terms: Public domain W3C validator