MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodsubdi Structured version   Visualization version   GIF version

Theorem lmodsubdi 20840
Description: Scalar multiplication distributive law for subtraction. (hvsubdistr1 31011 analogue, with longer proof since our scalar multiplication is not commutative.) (Contributed by NM, 2-Jul-2014.)
Hypotheses
Ref Expression
lmodsubdi.v 𝑉 = (Base‘𝑊)
lmodsubdi.t · = ( ·𝑠𝑊)
lmodsubdi.f 𝐹 = (Scalar‘𝑊)
lmodsubdi.k 𝐾 = (Base‘𝐹)
lmodsubdi.m = (-g𝑊)
lmodsubdi.w (𝜑𝑊 ∈ LMod)
lmodsubdi.a (𝜑𝐴𝐾)
lmodsubdi.x (𝜑𝑋𝑉)
lmodsubdi.y (𝜑𝑌𝑉)
Assertion
Ref Expression
lmodsubdi (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))

Proof of Theorem lmodsubdi
StepHypRef Expression
1 lmodsubdi.w . . . 4 (𝜑𝑊 ∈ LMod)
2 lmodsubdi.x . . . 4 (𝜑𝑋𝑉)
3 lmodsubdi.y . . . 4 (𝜑𝑌𝑉)
4 lmodsubdi.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2729 . . . . 5 (+g𝑊) = (+g𝑊)
6 lmodsubdi.m . . . . 5 = (-g𝑊)
7 lmodsubdi.f . . . . 5 𝐹 = (Scalar‘𝑊)
8 lmodsubdi.t . . . . 5 · = ( ·𝑠𝑊)
9 eqid 2729 . . . . 5 (invg𝐹) = (invg𝐹)
10 eqid 2729 . . . . 5 (1r𝐹) = (1r𝐹)
114, 5, 6, 7, 8, 9, 10lmodvsubval2 20838 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌)))
121, 2, 3, 11syl3anc 1373 . . 3 (𝜑 → (𝑋 𝑌) = (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌)))
1312oveq2d 7369 . 2 (𝜑 → (𝐴 · (𝑋 𝑌)) = (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))))
14 lmodsubdi.k . . . . . . . 8 𝐾 = (Base‘𝐹)
15 eqid 2729 . . . . . . . 8 (.r𝐹) = (.r𝐹)
167lmodring 20789 . . . . . . . . 9 (𝑊 ∈ LMod → 𝐹 ∈ Ring)
171, 16syl 17 . . . . . . . 8 (𝜑𝐹 ∈ Ring)
18 lmodsubdi.a . . . . . . . 8 (𝜑𝐴𝐾)
1914, 15, 10, 9, 17, 18ringnegr 20206 . . . . . . 7 (𝜑 → (𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) = ((invg𝐹)‘𝐴))
2014, 15, 10, 9, 17, 18ringnegl 20205 . . . . . . 7 (𝜑 → (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) = ((invg𝐹)‘𝐴))
2119, 20eqtr4d 2767 . . . . . 6 (𝜑 → (𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) = (((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴))
2221oveq1d 7368 . . . . 5 (𝜑 → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌))
23 ringgrp 20141 . . . . . . . 8 (𝐹 ∈ Ring → 𝐹 ∈ Grp)
2417, 23syl 17 . . . . . . 7 (𝜑𝐹 ∈ Grp)
2514, 10ringidcl 20168 . . . . . . . 8 (𝐹 ∈ Ring → (1r𝐹) ∈ 𝐾)
2617, 25syl 17 . . . . . . 7 (𝜑 → (1r𝐹) ∈ 𝐾)
2714, 9grpinvcl 18884 . . . . . . 7 ((𝐹 ∈ Grp ∧ (1r𝐹) ∈ 𝐾) → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
2824, 26, 27syl2anc 584 . . . . . 6 (𝜑 → ((invg𝐹)‘(1r𝐹)) ∈ 𝐾)
294, 7, 8, 14, 15lmodvsass 20808 . . . . . 6 ((𝑊 ∈ LMod ∧ (𝐴𝐾 ∧ ((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝑌𝑉)) → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)))
301, 18, 28, 3, 29syl13anc 1374 . . . . 5 (𝜑 → ((𝐴(.r𝐹)((invg𝐹)‘(1r𝐹))) · 𝑌) = (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)))
314, 7, 8, 14, 15lmodvsass 20808 . . . . . 6 ((𝑊 ∈ LMod ∧ (((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝐴𝐾𝑌𝑉)) → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
321, 28, 18, 3, 31syl13anc 1374 . . . . 5 (𝜑 → ((((invg𝐹)‘(1r𝐹))(.r𝐹)𝐴) · 𝑌) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
3322, 30, 323eqtr3d 2772 . . . 4 (𝜑 → (𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌)) = (((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌)))
3433oveq2d 7369 . . 3 (𝜑 → ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
354, 7, 8, 14lmodvscl 20799 . . . . 5 ((𝑊 ∈ LMod ∧ ((invg𝐹)‘(1r𝐹)) ∈ 𝐾𝑌𝑉) → (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)
361, 28, 3, 35syl3anc 1373 . . . 4 (𝜑 → (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)
374, 5, 7, 8, 14lmodvsdi 20806 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴𝐾𝑋𝑉 ∧ (((invg𝐹)‘(1r𝐹)) · 𝑌) ∈ 𝑉)) → (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))))
381, 18, 2, 36, 37syl13anc 1374 . . 3 (𝜑 → (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g𝑊)(𝐴 · (((invg𝐹)‘(1r𝐹)) · 𝑌))))
394, 7, 8, 14lmodvscl 20799 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑋𝑉) → (𝐴 · 𝑋) ∈ 𝑉)
401, 18, 2, 39syl3anc 1373 . . . 4 (𝜑 → (𝐴 · 𝑋) ∈ 𝑉)
414, 7, 8, 14lmodvscl 20799 . . . . 5 ((𝑊 ∈ LMod ∧ 𝐴𝐾𝑌𝑉) → (𝐴 · 𝑌) ∈ 𝑉)
421, 18, 3, 41syl3anc 1373 . . . 4 (𝜑 → (𝐴 · 𝑌) ∈ 𝑉)
434, 5, 6, 7, 8, 9, 10lmodvsubval2 20838 . . . 4 ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
441, 40, 42, 43syl3anc 1373 . . 3 (𝜑 → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g𝑊)(((invg𝐹)‘(1r𝐹)) · (𝐴 · 𝑌))))
4534, 38, 443eqtr4rd 2775 . 2 (𝜑 → ((𝐴 · 𝑋) (𝐴 · 𝑌)) = (𝐴 · (𝑋(+g𝑊)(((invg𝐹)‘(1r𝐹)) · 𝑌))))
4613, 45eqtr4d 2767 1 (𝜑 → (𝐴 · (𝑋 𝑌)) = ((𝐴 · 𝑋) (𝐴 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  .rcmulr 17180  Scalarcsca 17182   ·𝑠 cvsca 17183  Grpcgrp 18830  invgcminusg 18831  -gcsg 18832  1rcur 20084  Ringcrg 20136  LModclmod 20781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-ring 20138  df-lmod 20783
This theorem is referenced by:  lvecvscan  21036  cpmadugsumlemF  22779  nlmdsdi  24585  minveclem2  25342  q1pvsca  33545  r1pvsca  33546  mapdpglem21  41671  mapdpglem28  41680  baerlem3lem1  41686  baerlem5alem1  41687  baerlem5blem1  41688
  Copyright terms: Public domain W3C validator