Proof of Theorem lmodsubdi
Step | Hyp | Ref
| Expression |
1 | | lmodsubdi.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LMod) |
2 | | lmodsubdi.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
3 | | lmodsubdi.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
4 | | lmodsubdi.v |
. . . . 5
⊢ 𝑉 = (Base‘𝑊) |
5 | | eqid 2738 |
. . . . 5
⊢
(+g‘𝑊) = (+g‘𝑊) |
6 | | lmodsubdi.m |
. . . . 5
⊢ − =
(-g‘𝑊) |
7 | | lmodsubdi.f |
. . . . 5
⊢ 𝐹 = (Scalar‘𝑊) |
8 | | lmodsubdi.t |
. . . . 5
⊢ · = (
·𝑠 ‘𝑊) |
9 | | eqid 2738 |
. . . . 5
⊢
(invg‘𝐹) = (invg‘𝐹) |
10 | | eqid 2738 |
. . . . 5
⊢
(1r‘𝐹) = (1r‘𝐹) |
11 | 4, 5, 6, 7, 8, 9, 10 | lmodvsubval2 20178 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) |
12 | 1, 2, 3, 11 | syl3anc 1370 |
. . 3
⊢ (𝜑 → (𝑋 − 𝑌) = (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) |
13 | 12 | oveq2d 7291 |
. 2
⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = (𝐴 · (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)))) |
14 | | lmodsubdi.k |
. . . . . . . 8
⊢ 𝐾 = (Base‘𝐹) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(.r‘𝐹) = (.r‘𝐹) |
16 | 7 | lmodring 20131 |
. . . . . . . . 9
⊢ (𝑊 ∈ LMod → 𝐹 ∈ Ring) |
17 | 1, 16 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ Ring) |
18 | | lmodsubdi.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝐾) |
19 | 14, 15, 10, 9, 17, 18 | rngnegr 19834 |
. . . . . . 7
⊢ (𝜑 → (𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) =
((invg‘𝐹)‘𝐴)) |
20 | 14, 15, 10, 9, 17, 18 | ringnegl 19833 |
. . . . . . 7
⊢ (𝜑 →
(((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴) = ((invg‘𝐹)‘𝐴)) |
21 | 19, 20 | eqtr4d 2781 |
. . . . . 6
⊢ (𝜑 → (𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) =
(((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴)) |
22 | 21 | oveq1d 7290 |
. . . . 5
⊢ (𝜑 → ((𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) · 𝑌) = ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌)) |
23 | | ringgrp 19788 |
. . . . . . . 8
⊢ (𝐹 ∈ Ring → 𝐹 ∈ Grp) |
24 | 17, 23 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ Grp) |
25 | 14, 10 | ringidcl 19807 |
. . . . . . . 8
⊢ (𝐹 ∈ Ring →
(1r‘𝐹)
∈ 𝐾) |
26 | 17, 25 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (1r‘𝐹) ∈ 𝐾) |
27 | 14, 9 | grpinvcl 18627 |
. . . . . . 7
⊢ ((𝐹 ∈ Grp ∧
(1r‘𝐹)
∈ 𝐾) →
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
28 | 24, 26, 27 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 →
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾) |
29 | 4, 7, 8, 14, 15 | lmodvsass 20148 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ ((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → ((𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) · 𝑌) = (𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) |
30 | 1, 18, 28, 3, 29 | syl13anc 1371 |
. . . . 5
⊢ (𝜑 → ((𝐴(.r‘𝐹)((invg‘𝐹)‘(1r‘𝐹))) · 𝑌) = (𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) |
31 | 4, 7, 8, 14, 15 | lmodvsass 20148 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧
(((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉)) → ((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
32 | 1, 28, 18, 3, 31 | syl13anc 1371 |
. . . . 5
⊢ (𝜑 →
((((invg‘𝐹)‘(1r‘𝐹))(.r‘𝐹)𝐴) · 𝑌) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
33 | 22, 30, 32 | 3eqtr3d 2786 |
. . . 4
⊢ (𝜑 → (𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)) = (((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌))) |
34 | 33 | oveq2d 7291 |
. . 3
⊢ (𝜑 → ((𝐴 · 𝑋)(+g‘𝑊)(𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
35 | 4, 7, 8, 14 | lmodvscl 20140 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧
((invg‘𝐹)‘(1r‘𝐹)) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (((invg‘𝐹)‘(1r‘𝐹)) · 𝑌) ∈ 𝑉) |
36 | 1, 28, 3, 35 | syl3anc 1370 |
. . . 4
⊢ (𝜑 →
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌) ∈ 𝑉) |
37 | 4, 5, 7, 8, 14 | lmodvsdi 20146 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ (((invg‘𝐹)‘(1r‘𝐹)) · 𝑌) ∈ 𝑉)) → (𝐴 · (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g‘𝑊)(𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)))) |
38 | 1, 18, 2, 36, 37 | syl13anc 1371 |
. . 3
⊢ (𝜑 → (𝐴 · (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌))) = ((𝐴 · 𝑋)(+g‘𝑊)(𝐴 ·
(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)))) |
39 | 4, 7, 8, 14 | lmodvscl 20140 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴 · 𝑋) ∈ 𝑉) |
40 | 1, 18, 2, 39 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐴 · 𝑋) ∈ 𝑉) |
41 | 4, 7, 8, 14 | lmodvscl 20140 |
. . . . 5
⊢ ((𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉) → (𝐴 · 𝑌) ∈ 𝑉) |
42 | 1, 18, 3, 41 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → (𝐴 · 𝑌) ∈ 𝑉) |
43 | 4, 5, 6, 7, 8, 9, 10 | lmodvsubval2 20178 |
. . . 4
⊢ ((𝑊 ∈ LMod ∧ (𝐴 · 𝑋) ∈ 𝑉 ∧ (𝐴 · 𝑌) ∈ 𝑉) → ((𝐴 · 𝑋) − (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
44 | 1, 40, 42, 43 | syl3anc 1370 |
. . 3
⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐴 · 𝑌)) = ((𝐴 · 𝑋)(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · (𝐴 · 𝑌)))) |
45 | 34, 38, 44 | 3eqtr4rd 2789 |
. 2
⊢ (𝜑 → ((𝐴 · 𝑋) − (𝐴 · 𝑌)) = (𝐴 · (𝑋(+g‘𝑊)(((invg‘𝐹)‘(1r‘𝐹)) · 𝑌)))) |
46 | 13, 45 | eqtr4d 2781 |
1
⊢ (𝜑 → (𝐴 · (𝑋 − 𝑌)) = ((𝐴 · 𝑋) − (𝐴 · 𝑌))) |