MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfixed Structured version   Visualization version   GIF version

Theorem lspfixed 19634
Description: Show membership in the span of the sum of two vectors, one of which (𝑌) is fixed in advance. (Contributed by NM, 27-May-2015.) (Revised by AV, 12-Jul-2022.)
Hypotheses
Ref Expression
lspfixed.v 𝑉 = (Base‘𝑊)
lspfixed.p + = (+g𝑊)
lspfixed.o 0 = (0g𝑊)
lspfixed.n 𝑁 = (LSpan‘𝑊)
lspfixed.w (𝜑𝑊 ∈ LVec)
lspfixed.y (𝜑𝑌𝑉)
lspfixed.z (𝜑𝑍𝑉)
lspfixed.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
lspfixed.f (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
lspfixed.g (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspfixed (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)

Proof of Theorem lspfixed
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspfixed.g . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspfixed.v . . . 4 𝑉 = (Base‘𝑊)
3 lspfixed.p . . . 4 + = (+g𝑊)
4 eqid 2771 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2771 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2771 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 lspfixed.n . . . 4 𝑁 = (LSpan‘𝑊)
8 lspfixed.w . . . . 5 (𝜑𝑊 ∈ LVec)
9 lveclmod 19612 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
108, 9syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
11 lspfixed.y . . . 4 (𝜑𝑌𝑉)
12 lspfixed.z . . . 4 (𝜑𝑍𝑉)
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 19600 . . 3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))))
141, 13mpbid 224 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
15103ad2ant1 1114 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
16 eqid 2771 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
172, 16, 7lspsncl 19483 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
1810, 12, 17syl2anc 576 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
19183ad2ant1 1114 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
2083ad2ant1 1114 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LVec)
214lvecdrng 19611 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
2220, 21syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing)
23 simp2l 1180 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
24 lspfixed.f . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
25243ad2ant1 1114 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
26 simpl3 1174 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
27 simpr 477 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2827oveq1d 6989 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
29 simpl1 1172 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝜑)
3029, 10syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
3129, 11syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌𝑉)
32 eqid 2771 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
33 lspfixed.o . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
342, 4, 6, 32, 33lmod0vs 19401 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3530, 31, 34syl2anc 576 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3628, 35eqtrd 2807 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = 0 )
3736oveq1d 6989 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ( 0 + (𝑙( ·𝑠𝑊)𝑍)))
38 simp2r 1181 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
39123ad2ant1 1114 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍𝑉)
402, 4, 6, 5lmodvscl 19385 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4115, 38, 39, 40syl3anc 1352 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4241adantr 473 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
432, 3, 33lmod0vlid 19398 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4430, 42, 43syl2anc 576 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4526, 37, 443eqtrd 2811 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑙( ·𝑠𝑊)𝑍))
4629, 18syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
47 simpl2r 1208 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
482, 7lspsnid 19499 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → 𝑍 ∈ (𝑁‘{𝑍}))
4910, 12, 48syl2anc 576 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝑁‘{𝑍}))
5029, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑍 ∈ (𝑁‘{𝑍}))
514, 6, 5, 16lssvscl 19461 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5230, 46, 47, 50, 51syl22anc 827 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5345, 52eqeltrd 2859 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍}))
5453ex 405 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑍})))
5554necon3bd 2974 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑍}) → 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5625, 55mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
57 eqid 2771 . . . . . . . . 9 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
585, 32, 57drnginvrcl 19254 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
5922, 23, 56, 58syl3anc 1352 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
60493ad2ant1 1114 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍 ∈ (𝑁‘{𝑍}))
6115, 19, 38, 60, 51syl22anc 827 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
624, 6, 5, 16lssvscl 19461 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
6315, 19, 59, 61, 62syl22anc 827 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
645, 32, 57drnginvrn0 19255 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
6522, 23, 56, 64syl3anc 1352 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
66 lspfixed.e . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
67663ad2ant1 1114 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
68 simpl3 1174 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
69 oveq1 6981 . . . . . . . . . . . . . . 15 (𝑙 = (0g‘(Scalar‘𝑊)) → (𝑙( ·𝑠𝑊)𝑍) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍))
702, 4, 6, 32, 33lmod0vs 19401 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7115, 39, 70syl2anc 576 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7269, 71sylan9eqr 2829 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) = 0 )
7372oveq2d 6990 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ((𝑘( ·𝑠𝑊)𝑌) + 0 ))
74113ad2ant1 1114 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌𝑉)
752, 4, 6, 5lmodvscl 19385 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
7615, 23, 74, 75syl3anc 1352 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
772, 3, 33lmod0vrid 19399 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7815, 76, 77syl2anc 576 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7978adantr 473 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
8068, 73, 793eqtrd 2811 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠𝑊)𝑌))
812, 16, 7lspsncl 19483 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
8210, 11, 81syl2anc 576 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
83823ad2ant1 1114 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
842, 7lspsnid 19499 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
8510, 11, 84syl2anc 576 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
86853ad2ant1 1114 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑌}))
874, 6, 5, 16lssvscl 19461 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8815, 83, 23, 86, 87syl22anc 827 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8988adantr 473 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
9080, 89eqeltrd 2859 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑌}))
9190ex 405 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑌})))
9291necon3bd 2974 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑙 ≠ (0g‘(Scalar‘𝑊))))
9367, 92mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ≠ (0g‘(Scalar‘𝑊)))
94 simpl1 1172 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝜑)
9594, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
96 preq2 4540 . . . . . . . . . . . . . 14 (𝑍 = 0 → {𝑌, 𝑍} = {𝑌, 0 })
9796fveq2d 6500 . . . . . . . . . . . . 13 (𝑍 = 0 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌, 0 }))
982, 33, 7, 15, 74lsppr0 19598 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
9997, 98sylan9eqr 2829 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
10095, 99eleqtrd 2861 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌}))
101100ex 405 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑍 = 0𝑋 ∈ (𝑁‘{𝑌})))
102101necon3bd 2974 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑍0 ))
10367, 102mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍0 )
1042, 6, 4, 5, 32, 33, 20, 38, 39lvecvsn0 19615 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑙( ·𝑠𝑊)𝑍) ≠ 0 ↔ (𝑙 ≠ (0g‘(Scalar‘𝑊)) ∧ 𝑍0 )))
10593, 103, 104mpbir2and 701 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )
1062, 6, 4, 5, 32, 33, 20, 59, 41lvecvsn0 19615 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ↔ (((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )))
10765, 105, 106mpbir2and 701 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 )
108 eldifsn 4589 . . . . . 6 ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ↔ ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}) ∧ (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ))
10963, 107, 108sylanbrc 575 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }))
110 simp3 1119 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
1112, 3lmodvacl 19382 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
11215, 76, 41, 111syl3anc 1352 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
1132, 7lspsnid 19499 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11415, 112, 113syl2anc 576 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
115110, 114eqeltrd 2859 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1162, 4, 6, 5, 32, 7lspsnvs 19620 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊))) ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11720, 59, 65, 112, 116syl121anc 1356 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1182, 3, 4, 6, 5lmodvsdi 19391 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
11915, 59, 76, 41, 118syl13anc 1353 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
120 eqid 2771 . . . . . . . . . . . . . . 15 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
121 eqid 2771 . . . . . . . . . . . . . . 15 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1225, 32, 120, 121, 57drnginvrl 19256 . . . . . . . . . . . . . 14 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
12322, 23, 56, 122syl3anc 1352 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
124123oveq1d 6989 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
1252, 4, 6, 5, 120lmodvsass 19393 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
12615, 59, 23, 74, 125syl13anc 1353 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
1272, 4, 6, 121lmodvs1 19396 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
12815, 74, 127syl2anc 576 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
129124, 126, 1283eqtr3d 2815 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) = 𝑌)
130129oveq1d 6989 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
131119, 130eqtrd 2807 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
132131sneqd 4447 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → {(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
133132fveq2d 6500 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
134117, 133eqtr3d 2809 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
135115, 134eleqtrd 2861 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
136 oveq2 6982 . . . . . . . . 9 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑌 + 𝑧) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
137136sneqd 4447 . . . . . . . 8 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → {(𝑌 + 𝑧)} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
138137fveq2d 6500 . . . . . . 7 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑁‘{(𝑌 + 𝑧)}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
139138eleq2d 2844 . . . . . 6 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}) ↔ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})))
140139rspcev 3528 . . . . 5 (((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ∧ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
141109, 135, 140syl2anc 576 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
1421413exp 1100 . . 3 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))))
143142rexlimdvv 3231 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)})))
14414, 143mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387  w3a 1069   = wceq 1508  wcel 2051  wne 2960  wrex 3082  cdif 3819  {csn 4435  {cpr 4437  cfv 6185  (class class class)co 6974  Basecbs 16337  +gcplusg 16419  .rcmulr 16420  Scalarcsca 16422   ·𝑠 cvsca 16423  0gc0g 16567  1rcur 18986  invrcinvr 19156  DivRingcdr 19237  LModclmod 19368  LSubSpclss 19437  LSpanclspn 19477  LVecclvec 19608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-int 4746  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-1st 7499  df-2nd 7500  df-tpos 7693  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-nn 11438  df-2 11501  df-3 11502  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-plusg 16432  df-mulr 16433  df-0g 16569  df-mgm 17722  df-sgrp 17764  df-mnd 17775  df-submnd 17816  df-grp 17906  df-minusg 17907  df-sbg 17908  df-subg 18072  df-cntz 18230  df-lsm 18534  df-cmn 18680  df-abl 18681  df-mgp 18975  df-ur 18987  df-ring 19034  df-oppr 19108  df-dvdsr 19126  df-unit 19127  df-invr 19157  df-drng 19239  df-lmod 19370  df-lss 19438  df-lsp 19478  df-lvec 19609
This theorem is referenced by:  lsatfixedN  35627
  Copyright terms: Public domain W3C validator