MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfixed Structured version   Visualization version   GIF version

Theorem lspfixed 19891
Description: Show membership in the span of the sum of two vectors, one of which (𝑌) is fixed in advance. (Contributed by NM, 27-May-2015.) (Revised by AV, 12-Jul-2022.)
Hypotheses
Ref Expression
lspfixed.v 𝑉 = (Base‘𝑊)
lspfixed.p + = (+g𝑊)
lspfixed.o 0 = (0g𝑊)
lspfixed.n 𝑁 = (LSpan‘𝑊)
lspfixed.w (𝜑𝑊 ∈ LVec)
lspfixed.y (𝜑𝑌𝑉)
lspfixed.z (𝜑𝑍𝑉)
lspfixed.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
lspfixed.f (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
lspfixed.g (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspfixed (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)

Proof of Theorem lspfixed
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspfixed.g . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspfixed.v . . . 4 𝑉 = (Base‘𝑊)
3 lspfixed.p . . . 4 + = (+g𝑊)
4 eqid 2822 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2822 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2822 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 lspfixed.n . . . 4 𝑁 = (LSpan‘𝑊)
8 lspfixed.w . . . . 5 (𝜑𝑊 ∈ LVec)
9 lveclmod 19869 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
108, 9syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
11 lspfixed.y . . . 4 (𝜑𝑌𝑉)
12 lspfixed.z . . . 4 (𝜑𝑍𝑉)
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 19857 . . 3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))))
141, 13mpbid 235 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
15103ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
16 eqid 2822 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
172, 16, 7lspsncl 19740 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
1810, 12, 17syl2anc 587 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
19183ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
2083ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LVec)
214lvecdrng 19868 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
2220, 21syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing)
23 simp2l 1196 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
24 lspfixed.f . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
25243ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
26 simpl3 1190 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
27 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2827oveq1d 7155 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
29 simpl1 1188 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝜑)
3029, 10syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
3129, 11syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌𝑉)
32 eqid 2822 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
33 lspfixed.o . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
342, 4, 6, 32, 33lmod0vs 19658 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3530, 31, 34syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3628, 35eqtrd 2857 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = 0 )
3736oveq1d 7155 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ( 0 + (𝑙( ·𝑠𝑊)𝑍)))
38 simp2r 1197 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
39123ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍𝑉)
402, 4, 6, 5lmodvscl 19642 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4115, 38, 39, 40syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4241adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
432, 3, 33lmod0vlid 19655 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4430, 42, 43syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4526, 37, 443eqtrd 2861 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑙( ·𝑠𝑊)𝑍))
4629, 18syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
47 simpl2r 1224 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
482, 7lspsnid 19756 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → 𝑍 ∈ (𝑁‘{𝑍}))
4910, 12, 48syl2anc 587 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝑁‘{𝑍}))
5029, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑍 ∈ (𝑁‘{𝑍}))
514, 6, 5, 16lssvscl 19718 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5230, 46, 47, 50, 51syl22anc 837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5345, 52eqeltrd 2914 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍}))
5453ex 416 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑍})))
5554necon3bd 3025 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑍}) → 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5625, 55mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
57 eqid 2822 . . . . . . . . 9 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
585, 32, 57drnginvrcl 19510 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
5922, 23, 56, 58syl3anc 1368 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
60493ad2ant1 1130 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍 ∈ (𝑁‘{𝑍}))
6115, 19, 38, 60, 51syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
624, 6, 5, 16lssvscl 19718 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
6315, 19, 59, 61, 62syl22anc 837 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
645, 32, 57drnginvrn0 19511 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
6522, 23, 56, 64syl3anc 1368 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
66 lspfixed.e . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
67663ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
68 simpl3 1190 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
69 oveq1 7147 . . . . . . . . . . . . . . 15 (𝑙 = (0g‘(Scalar‘𝑊)) → (𝑙( ·𝑠𝑊)𝑍) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍))
702, 4, 6, 32, 33lmod0vs 19658 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7115, 39, 70syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7269, 71sylan9eqr 2879 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) = 0 )
7372oveq2d 7156 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ((𝑘( ·𝑠𝑊)𝑌) + 0 ))
74113ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌𝑉)
752, 4, 6, 5lmodvscl 19642 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
7615, 23, 74, 75syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
772, 3, 33lmod0vrid 19656 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7815, 76, 77syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7978adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
8068, 73, 793eqtrd 2861 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠𝑊)𝑌))
812, 16, 7lspsncl 19740 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
8210, 11, 81syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
83823ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
842, 7lspsnid 19756 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
8510, 11, 84syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
86853ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑌}))
874, 6, 5, 16lssvscl 19718 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8815, 83, 23, 86, 87syl22anc 837 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8988adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
9080, 89eqeltrd 2914 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑌}))
9190ex 416 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑌})))
9291necon3bd 3025 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑙 ≠ (0g‘(Scalar‘𝑊))))
9367, 92mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ≠ (0g‘(Scalar‘𝑊)))
94 simpl1 1188 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝜑)
9594, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
96 preq2 4644 . . . . . . . . . . . . . 14 (𝑍 = 0 → {𝑌, 𝑍} = {𝑌, 0 })
9796fveq2d 6656 . . . . . . . . . . . . 13 (𝑍 = 0 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌, 0 }))
982, 33, 7, 15, 74lsppr0 19855 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
9997, 98sylan9eqr 2879 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
10095, 99eleqtrd 2916 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌}))
101100ex 416 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑍 = 0𝑋 ∈ (𝑁‘{𝑌})))
102101necon3bd 3025 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑍0 ))
10367, 102mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍0 )
1042, 6, 4, 5, 32, 33, 20, 38, 39lvecvsn0 19872 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑙( ·𝑠𝑊)𝑍) ≠ 0 ↔ (𝑙 ≠ (0g‘(Scalar‘𝑊)) ∧ 𝑍0 )))
10593, 103, 104mpbir2and 712 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )
1062, 6, 4, 5, 32, 33, 20, 59, 41lvecvsn0 19872 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ↔ (((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )))
10765, 105, 106mpbir2and 712 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 )
108 eldifsn 4693 . . . . . 6 ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ↔ ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}) ∧ (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ))
10963, 107, 108sylanbrc 586 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }))
110 simp3 1135 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
1112, 3lmodvacl 19639 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
11215, 76, 41, 111syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
1132, 7lspsnid 19756 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11415, 112, 113syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
115110, 114eqeltrd 2914 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1162, 4, 6, 5, 32, 7lspsnvs 19877 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊))) ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11720, 59, 65, 112, 116syl121anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1182, 3, 4, 6, 5lmodvsdi 19648 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
11915, 59, 76, 41, 118syl13anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
120 eqid 2822 . . . . . . . . . . . . . . 15 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
121 eqid 2822 . . . . . . . . . . . . . . 15 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1225, 32, 120, 121, 57drnginvrl 19512 . . . . . . . . . . . . . 14 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
12322, 23, 56, 122syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
124123oveq1d 7155 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
1252, 4, 6, 5, 120lmodvsass 19650 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
12615, 59, 23, 74, 125syl13anc 1369 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
1272, 4, 6, 121lmodvs1 19653 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
12815, 74, 127syl2anc 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
129124, 126, 1283eqtr3d 2865 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) = 𝑌)
130129oveq1d 7155 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
131119, 130eqtrd 2857 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
132131sneqd 4551 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → {(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
133132fveq2d 6656 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
134117, 133eqtr3d 2859 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
135115, 134eleqtrd 2916 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
136 oveq2 7148 . . . . . . . . 9 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑌 + 𝑧) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
137136sneqd 4551 . . . . . . . 8 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → {(𝑌 + 𝑧)} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
138137fveq2d 6656 . . . . . . 7 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑁‘{(𝑌 + 𝑧)}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
139138eleq2d 2899 . . . . . 6 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}) ↔ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})))
140139rspcev 3598 . . . . 5 (((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ∧ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
141109, 135, 140syl2anc 587 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
1421413exp 1116 . . 3 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))))
143142rexlimdvv 3279 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)})))
14414, 143mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2114  wne 3011  wrex 3131  cdif 3905  {csn 4539  {cpr 4541  cfv 6334  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  .rcmulr 16557  Scalarcsca 16559   ·𝑠 cvsca 16560  0gc0g 16704  1rcur 19242  invrcinvr 19415  DivRingcdr 19493  LModclmod 19625  LSubSpclss 19694  LSpanclspn 19734  LVecclvec 19865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-tpos 7879  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-mulr 16570  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-cntz 18438  df-lsm 18752  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-drng 19495  df-lmod 19627  df-lss 19695  df-lsp 19735  df-lvec 19866
This theorem is referenced by:  lsatfixedN  36263
  Copyright terms: Public domain W3C validator