Step | Hyp | Ref
| Expression |
1 | | lspfixed.g |
. . 3
β’ (π β π β (πβ{π, π})) |
2 | | lspfixed.v |
. . . 4
β’ π = (Baseβπ) |
3 | | lspfixed.p |
. . . 4
β’ + =
(+gβπ) |
4 | | eqid 2732 |
. . . 4
β’
(Scalarβπ) =
(Scalarβπ) |
5 | | eqid 2732 |
. . . 4
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
6 | | eqid 2732 |
. . . 4
β’ (
Β·π βπ) = ( Β·π
βπ) |
7 | | lspfixed.n |
. . . 4
β’ π = (LSpanβπ) |
8 | | lspfixed.w |
. . . . 5
β’ (π β π β LVec) |
9 | | lveclmod 20709 |
. . . . 5
β’ (π β LVec β π β LMod) |
10 | 8, 9 | syl 17 |
. . . 4
β’ (π β π β LMod) |
11 | | lspfixed.y |
. . . 4
β’ (π β π β π) |
12 | | lspfixed.z |
. . . 4
β’ (π β π β π) |
13 | 2, 3, 4, 5, 6, 7, 10, 11, 12 | lspprel 20697 |
. . 3
β’ (π β (π β (πβ{π, π}) β βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)))) |
14 | 1, 13 | mpbid 231 |
. 2
β’ (π β βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) |
15 | 10 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β LMod) |
16 | | eqid 2732 |
. . . . . . . . . 10
β’
(LSubSpβπ) =
(LSubSpβπ) |
17 | 2, 16, 7 | lspsncl 20580 |
. . . . . . . . 9
β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
18 | 10, 12, 17 | syl2anc 584 |
. . . . . . . 8
β’ (π β (πβ{π}) β (LSubSpβπ)) |
19 | 18 | 3ad2ant1 1133 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (πβ{π}) β (LSubSpβπ)) |
20 | 8 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β LVec) |
21 | 4 | lvecdrng 20708 |
. . . . . . . . 9
β’ (π β LVec β
(Scalarβπ) β
DivRing) |
22 | 20, 21 | syl 17 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (Scalarβπ) β DivRing) |
23 | | simp2l 1199 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β (Baseβ(Scalarβπ))) |
24 | | lspfixed.f |
. . . . . . . . . 10
β’ (π β Β¬ π β (πβ{π})) |
25 | 24 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β Β¬ π β (πβ{π})) |
26 | | simpl3 1193 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) |
27 | | simpr 485 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π = (0gβ(Scalarβπ))) |
28 | 27 | oveq1d 7420 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (π( Β·π
βπ)π) =
((0gβ(Scalarβπ))( Β·π
βπ)π)) |
29 | | simpl1 1191 |
. . . . . . . . . . . . . . . . 17
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π) |
30 | 29, 10 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β LMod) |
31 | 29, 11 | syl 17 |
. . . . . . . . . . . . . . . 16
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β π) |
32 | | eqid 2732 |
. . . . . . . . . . . . . . . . 17
β’
(0gβ(Scalarβπ)) =
(0gβ(Scalarβπ)) |
33 | | lspfixed.o |
. . . . . . . . . . . . . . . . 17
β’ 0 =
(0gβπ) |
34 | 2, 4, 6, 32, 33 | lmod0vs 20497 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π β π) β
((0gβ(Scalarβπ))( Β·π
βπ)π) = 0 ) |
35 | 30, 31, 34 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β
((0gβ(Scalarβπ))( Β·π
βπ)π) = 0 ) |
36 | 28, 35 | eqtrd 2772 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (π( Β·π
βπ)π) = 0 ) |
37 | 36 | oveq1d 7420 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) = ( 0 + (π( Β·π
βπ)π))) |
38 | | simp2r 1200 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β (Baseβ(Scalarβπ))) |
39 | 12 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β π) |
40 | 2, 4, 6, 5 | lmodvscl 20481 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π β
(Baseβ(Scalarβπ)) β§ π β π) β (π( Β·π
βπ)π) β π) |
41 | 15, 38, 39, 40 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β π) |
42 | 41 | adantr 481 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (π( Β·π
βπ)π) β π) |
43 | 2, 3, 33 | lmod0vlid 20494 |
. . . . . . . . . . . . . 14
β’ ((π β LMod β§ (π(
Β·π βπ)π) β π) β ( 0 + (π( Β·π
βπ)π)) = (π( Β·π
βπ)π)) |
44 | 30, 42, 43 | syl2anc 584 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β ( 0 + (π( Β·π
βπ)π)) = (π( Β·π
βπ)π)) |
45 | 26, 37, 44 | 3eqtrd 2776 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π = (π( Β·π
βπ)π)) |
46 | 29, 18 | syl 17 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (πβ{π}) β (LSubSpβπ)) |
47 | | simpl2r 1227 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β (Baseβ(Scalarβπ))) |
48 | 2, 7 | lspsnid 20596 |
. . . . . . . . . . . . . . 15
β’ ((π β LMod β§ π β π) β π β (πβ{π})) |
49 | 10, 12, 48 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ (π β π β (πβ{π})) |
50 | 29, 49 | syl 17 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β (πβ{π})) |
51 | 4, 6, 5, 16 | lssvscl 20558 |
. . . . . . . . . . . . 13
β’ (((π β LMod β§ (πβ{π}) β (LSubSpβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β (πβ{π}))) β (π( Β·π
βπ)π) β (πβ{π})) |
52 | 30, 46, 47, 50, 51 | syl22anc 837 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (π( Β·π
βπ)π) β (πβ{π})) |
53 | 45, 52 | eqeltrd 2833 |
. . . . . . . . . . 11
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β (πβ{π})) |
54 | 53 | ex 413 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (π = (0gβ(Scalarβπ)) β π β (πβ{π}))) |
55 | 54 | necon3bd 2954 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (Β¬ π β (πβ{π}) β π β
(0gβ(Scalarβπ)))) |
56 | 25, 55 | mpd 15 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β
(0gβ(Scalarβπ))) |
57 | | eqid 2732 |
. . . . . . . . 9
β’
(invrβ(Scalarβπ)) =
(invrβ(Scalarβπ)) |
58 | 5, 32, 57 | drnginvrcl 20329 |
. . . . . . . 8
β’
(((Scalarβπ)
β DivRing β§ π
β (Baseβ(Scalarβπ)) β§ π β
(0gβ(Scalarβπ))) β
((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ))) |
59 | 22, 23, 56, 58 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ))) |
60 | 49 | 3ad2ant1 1133 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β (πβ{π})) |
61 | 15, 19, 38, 60, 51 | syl22anc 837 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β (πβ{π})) |
62 | 4, 6, 5, 16 | lssvscl 20558 |
. . . . . . 7
β’ (((π β LMod β§ (πβ{π}) β (LSubSpβπ)) β§
(((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ)) β§ (π( Β·π
βπ)π) β (πβ{π}))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β (πβ{π})) |
63 | 15, 19, 59, 61, 62 | syl22anc 837 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β (πβ{π})) |
64 | 5, 32, 57 | drnginvrn0 20330 |
. . . . . . . 8
β’
(((Scalarβπ)
β DivRing β§ π
β (Baseβ(Scalarβπ)) β§ π β
(0gβ(Scalarβπ))) β
((invrβ(Scalarβπ))βπ) β
(0gβ(Scalarβπ))) |
65 | 22, 23, 56, 64 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
((invrβ(Scalarβπ))βπ) β
(0gβ(Scalarβπ))) |
66 | | lspfixed.e |
. . . . . . . . . 10
β’ (π β Β¬ π β (πβ{π})) |
67 | 66 | 3ad2ant1 1133 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β Β¬ π β (πβ{π})) |
68 | | simpl3 1193 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) |
69 | | oveq1 7412 |
. . . . . . . . . . . . . . 15
β’ (π =
(0gβ(Scalarβπ)) β (π( Β·π
βπ)π) =
((0gβ(Scalarβπ))( Β·π
βπ)π)) |
70 | 2, 4, 6, 32, 33 | lmod0vs 20497 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π β π) β
((0gβ(Scalarβπ))( Β·π
βπ)π) = 0 ) |
71 | 15, 39, 70 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
((0gβ(Scalarβπ))( Β·π
βπ)π) = 0 ) |
72 | 69, 71 | sylan9eqr 2794 |
. . . . . . . . . . . . . 14
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (π( Β·π
βπ)π) = 0 ) |
73 | 72 | oveq2d 7421 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) = ((π( Β·π
βπ)π) + 0 )) |
74 | 11 | 3ad2ant1 1133 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β π) |
75 | 2, 4, 6, 5 | lmodvscl 20481 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π β
(Baseβ(Scalarβπ)) β§ π β π) β (π( Β·π
βπ)π) β π) |
76 | 15, 23, 74, 75 | syl3anc 1371 |
. . . . . . . . . . . . . . 15
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β π) |
77 | 2, 3, 33 | lmod0vrid 20495 |
. . . . . . . . . . . . . . 15
β’ ((π β LMod β§ (π(
Β·π βπ)π) β π) β ((π( Β·π
βπ)π) + 0 ) = (π( Β·π
βπ)π)) |
78 | 15, 76, 77 | syl2anc 584 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β ((π( Β·π
βπ)π) + 0 ) = (π( Β·π
βπ)π)) |
79 | 78 | adantr 481 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β ((π( Β·π
βπ)π) + 0 ) = (π( Β·π
βπ)π)) |
80 | 68, 73, 79 | 3eqtrd 2776 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π = (π( Β·π
βπ)π)) |
81 | 2, 16, 7 | lspsncl 20580 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π β π) β (πβ{π}) β (LSubSpβπ)) |
82 | 10, 11, 81 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ (π β (πβ{π}) β (LSubSpβπ)) |
83 | 82 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (πβ{π}) β (LSubSpβπ)) |
84 | 2, 7 | lspsnid 20596 |
. . . . . . . . . . . . . . . 16
β’ ((π β LMod β§ π β π) β π β (πβ{π})) |
85 | 10, 11, 84 | syl2anc 584 |
. . . . . . . . . . . . . . 15
β’ (π β π β (πβ{π})) |
86 | 85 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β (πβ{π})) |
87 | 4, 6, 5, 16 | lssvscl 20558 |
. . . . . . . . . . . . . 14
β’ (((π β LMod β§ (πβ{π}) β (LSubSpβπ)) β§ (π β (Baseβ(Scalarβπ)) β§ π β (πβ{π}))) β (π( Β·π
βπ)π) β (πβ{π})) |
88 | 15, 83, 23, 86, 87 | syl22anc 837 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β (πβ{π})) |
89 | 88 | adantr 481 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β (π( Β·π
βπ)π) β (πβ{π})) |
90 | 80, 89 | eqeltrd 2833 |
. . . . . . . . . . 11
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = (0gβ(Scalarβπ))) β π β (πβ{π})) |
91 | 90 | ex 413 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (π = (0gβ(Scalarβπ)) β π β (πβ{π}))) |
92 | 91 | necon3bd 2954 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (Β¬ π β (πβ{π}) β π β
(0gβ(Scalarβπ)))) |
93 | 67, 92 | mpd 15 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β
(0gβ(Scalarβπ))) |
94 | | simpl1 1191 |
. . . . . . . . . . . . 13
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = 0 ) β π) |
95 | 94, 1 | syl 17 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = 0 ) β π β (πβ{π, π})) |
96 | | preq2 4737 |
. . . . . . . . . . . . . 14
β’ (π = 0 β {π, π} = {π, 0 }) |
97 | 96 | fveq2d 6892 |
. . . . . . . . . . . . 13
β’ (π = 0 β (πβ{π, π}) = (πβ{π, 0 })) |
98 | 2, 33, 7, 15, 74 | lsppr0 20695 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (πβ{π, 0 }) = (πβ{π})) |
99 | 97, 98 | sylan9eqr 2794 |
. . . . . . . . . . . 12
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = 0 ) β (πβ{π, π}) = (πβ{π})) |
100 | 95, 99 | eleqtrd 2835 |
. . . . . . . . . . 11
β’ (((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β§ π = 0 ) β π β (πβ{π})) |
101 | 100 | ex 413 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (π = 0 β π β (πβ{π}))) |
102 | 101 | necon3bd 2954 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (Β¬ π β (πβ{π}) β π β 0 )) |
103 | 67, 102 | mpd 15 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β 0 ) |
104 | 2, 6, 4, 5, 32, 33, 20, 38, 39 | lvecvsn0 20714 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β ((π( Β·π
βπ)π) β 0 β (π β
(0gβ(Scalarβπ)) β§ π β 0 ))) |
105 | 93, 103, 104 | mpbir2and 711 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (π( Β·π
βπ)π) β 0 ) |
106 | 2, 6, 4, 5, 32, 33, 20, 59, 41 | lvecvsn0 20714 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
((((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β 0 β
(((invrβ(Scalarβπ))βπ) β
(0gβ(Scalarβπ)) β§ (π( Β·π
βπ)π) β 0 ))) |
107 | 65, 105, 106 | mpbir2and 711 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β 0 ) |
108 | | eldifsn 4789 |
. . . . . 6
β’
((((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β ((πβ{π}) β { 0 }) β
((((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β (πβ{π}) β§
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β 0 )) |
109 | 63, 107, 108 | sylanbrc 583 |
. . . . 5
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β ((πβ{π}) β { 0 })) |
110 | | simp3 1138 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) |
111 | 2, 3 | lmodvacl 20478 |
. . . . . . . . 9
β’ ((π β LMod β§ (π(
Β·π βπ)π) β π β§ (π( Β·π
βπ)π) β π) β ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) β π) |
112 | 15, 76, 41, 111 | syl3anc 1371 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) β π) |
113 | 2, 7 | lspsnid 20596 |
. . . . . . . 8
β’ ((π β LMod β§ ((π(
Β·π βπ)π) + (π( Β·π
βπ)π)) β π) β ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) β (πβ{((π( Β·π
βπ)π) + (π( Β·π
βπ)π))})) |
114 | 15, 112, 113 | syl2anc 584 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) β (πβ{((π( Β·π
βπ)π) + (π( Β·π
βπ)π))})) |
115 | 110, 114 | eqeltrd 2833 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β (πβ{((π( Β·π
βπ)π) + (π( Β·π
βπ)π))})) |
116 | 2, 4, 6, 5, 32, 7 | lspsnvs 20719 |
. . . . . . . 8
β’ ((π β LVec β§
(((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ)) β§
((invrβ(Scalarβπ))βπ) β
(0gβ(Scalarβπ))) β§ ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) β π) β (πβ{(((invrβ(Scalarβπ))βπ)( Β·π βπ)((π( Β·π βπ)π) + (π( Β·π βπ)π)))}) = (πβ{((π( Β·π βπ)π) + (π( Β·π βπ)π))})) |
117 | 20, 59, 65, 112, 116 | syl121anc 1375 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (πβ{(((invrβ(Scalarβπ))βπ)( Β·π βπ)((π( Β·π βπ)π) + (π( Β·π βπ)π)))}) = (πβ{((π( Β·π βπ)π) + (π( Β·π βπ)π))})) |
118 | 2, 3, 4, 6, 5 | lmodvsdi 20487 |
. . . . . . . . . . 11
β’ ((π β LMod β§
(((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ)) β§ (π( Β·π
βπ)π) β π β§ (π( Β·π
βπ)π) β π)) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)((π(
Β·π βπ)π) + (π( Β·π
βπ)π))) =
((((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))) |
119 | 15, 59, 76, 41, 118 | syl13anc 1372 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)((π(
Β·π βπ)π) + (π( Β·π
βπ)π))) =
((((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))) |
120 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(.rβ(Scalarβπ)) =
(.rβ(Scalarβπ)) |
121 | | eqid 2732 |
. . . . . . . . . . . . . . 15
β’
(1rβ(Scalarβπ)) =
(1rβ(Scalarβπ)) |
122 | 5, 32, 120, 121, 57 | drnginvrl 20332 |
. . . . . . . . . . . . . 14
β’
(((Scalarβπ)
β DivRing β§ π
β (Baseβ(Scalarβπ)) β§ π β
(0gβ(Scalarβπ))) β
(((invrβ(Scalarβπ))βπ)(.rβ(Scalarβπ))π) = (1rβ(Scalarβπ))) |
123 | 22, 23, 56, 122 | syl3anc 1371 |
. . . . . . . . . . . . 13
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
(((invrβ(Scalarβπ))βπ)(.rβ(Scalarβπ))π) = (1rβ(Scalarβπ))) |
124 | 123 | oveq1d 7420 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
((((invrβ(Scalarβπ))βπ)(.rβ(Scalarβπ))π)( Β·π
βπ)π) =
((1rβ(Scalarβπ))( Β·π
βπ)π)) |
125 | 2, 4, 6, 5, 120 | lmodvsass 20489 |
. . . . . . . . . . . . 13
β’ ((π β LMod β§
(((invrβ(Scalarβπ))βπ) β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ)) β§ π β π)) β
((((invrβ(Scalarβπ))βπ)(.rβ(Scalarβπ))π)( Β·π
βπ)π) =
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π))) |
126 | 15, 59, 23, 74, 125 | syl13anc 1372 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
((((invrβ(Scalarβπ))βπ)(.rβ(Scalarβπ))π)( Β·π
βπ)π) =
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π))) |
127 | 2, 4, 6, 121 | lmodvs1 20492 |
. . . . . . . . . . . . 13
β’ ((π β LMod β§ π β π) β
((1rβ(Scalarβπ))( Β·π
βπ)π) = π) |
128 | 15, 74, 127 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
((1rβ(Scalarβπ))( Β·π
βπ)π) = π) |
129 | 124, 126,
128 | 3eqtr3d 2780 |
. . . . . . . . . . 11
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) = π) |
130 | 129 | oveq1d 7420 |
. . . . . . . . . 10
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
((((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π))) = (π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))) |
131 | 119, 130 | eqtrd 2772 |
. . . . . . . . 9
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)((π(
Β·π βπ)π) + (π( Β·π
βπ)π))) = (π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))) |
132 | 131 | sneqd 4639 |
. . . . . . . 8
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β
{(((invrβ(Scalarβπ))βπ)( Β·π
βπ)((π(
Β·π βπ)π) + (π( Β·π
βπ)π)))} = {(π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))}) |
133 | 132 | fveq2d 6892 |
. . . . . . 7
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (πβ{(((invrβ(Scalarβπ))βπ)( Β·π βπ)((π( Β·π βπ)π) + (π( Β·π βπ)π)))}) = (πβ{(π +
(((invrβ(Scalarβπ))βπ)( Β·π βπ)(π( Β·π βπ)π)))})) |
134 | 117, 133 | eqtr3d 2774 |
. . . . . 6
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β (πβ{((π( Β·π
βπ)π) + (π( Β·π
βπ)π))}) = (πβ{(π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))})) |
135 | 115, 134 | eleqtrd 2835 |
. . . . 5
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β π β (πβ{(π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))})) |
136 | | oveq2 7413 |
. . . . . . . . 9
β’ (π§ =
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β (π + π§) = (π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))) |
137 | 136 | sneqd 4639 |
. . . . . . . 8
β’ (π§ =
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β {(π + π§)} = {(π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))}) |
138 | 137 | fveq2d 6892 |
. . . . . . 7
β’ (π§ =
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β (πβ{(π + π§)}) = (πβ{(π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))})) |
139 | 138 | eleq2d 2819 |
. . . . . 6
β’ (π§ =
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β (π β (πβ{(π + π§)}) β π β (πβ{(π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))}))) |
140 | 139 | rspcev 3612 |
. . . . 5
β’
(((((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)) β ((πβ{π}) β { 0 }) β§ π β (πβ{(π +
(((invrβ(Scalarβπ))βπ)( Β·π
βπ)(π(
Β·π βπ)π)))})) β βπ§ β ((πβ{π}) β { 0 })π β (πβ{(π + π§)})) |
141 | 109, 135,
140 | syl2anc 584 |
. . . 4
β’ ((π β§ (π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β§ π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π))) β βπ§ β ((πβ{π}) β { 0 })π β (πβ{(π + π§)})) |
142 | 141 | 3exp 1119 |
. . 3
β’ (π β ((π β (Baseβ(Scalarβπ)) β§ π β (Baseβ(Scalarβπ))) β (π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) β βπ§ β ((πβ{π}) β { 0 })π β (πβ{(π + π§)})))) |
143 | 142 | rexlimdvv 3210 |
. 2
β’ (π β (βπ β (Baseβ(Scalarβπ))βπ β (Baseβ(Scalarβπ))π = ((π( Β·π
βπ)π) + (π( Β·π
βπ)π)) β βπ§ β ((πβ{π}) β { 0 })π β (πβ{(π + π§)}))) |
144 | 14, 143 | mpd 15 |
1
β’ (π β βπ§ β ((πβ{π}) β { 0 })π β (πβ{(π + π§)})) |