MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfixed Structured version   Visualization version   GIF version

Theorem lspfixed 19893
Description: Show membership in the span of the sum of two vectors, one of which (𝑌) is fixed in advance. (Contributed by NM, 27-May-2015.) (Revised by AV, 12-Jul-2022.)
Hypotheses
Ref Expression
lspfixed.v 𝑉 = (Base‘𝑊)
lspfixed.p + = (+g𝑊)
lspfixed.o 0 = (0g𝑊)
lspfixed.n 𝑁 = (LSpan‘𝑊)
lspfixed.w (𝜑𝑊 ∈ LVec)
lspfixed.y (𝜑𝑌𝑉)
lspfixed.z (𝜑𝑍𝑉)
lspfixed.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
lspfixed.f (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
lspfixed.g (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspfixed (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)

Proof of Theorem lspfixed
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspfixed.g . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspfixed.v . . . 4 𝑉 = (Base‘𝑊)
3 lspfixed.p . . . 4 + = (+g𝑊)
4 eqid 2798 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2798 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2798 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 lspfixed.n . . . 4 𝑁 = (LSpan‘𝑊)
8 lspfixed.w . . . . 5 (𝜑𝑊 ∈ LVec)
9 lveclmod 19871 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
108, 9syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
11 lspfixed.y . . . 4 (𝜑𝑌𝑉)
12 lspfixed.z . . . 4 (𝜑𝑍𝑉)
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 19859 . . 3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))))
141, 13mpbid 235 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
15103ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
16 eqid 2798 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
172, 16, 7lspsncl 19742 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
1810, 12, 17syl2anc 587 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
19183ad2ant1 1130 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
2083ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LVec)
214lvecdrng 19870 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
2220, 21syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing)
23 simp2l 1196 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
24 lspfixed.f . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
25243ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
26 simpl3 1190 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
27 simpr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2827oveq1d 7150 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
29 simpl1 1188 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝜑)
3029, 10syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
3129, 11syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌𝑉)
32 eqid 2798 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
33 lspfixed.o . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
342, 4, 6, 32, 33lmod0vs 19660 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3530, 31, 34syl2anc 587 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3628, 35eqtrd 2833 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = 0 )
3736oveq1d 7150 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ( 0 + (𝑙( ·𝑠𝑊)𝑍)))
38 simp2r 1197 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
39123ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍𝑉)
402, 4, 6, 5lmodvscl 19644 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4115, 38, 39, 40syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4241adantr 484 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
432, 3, 33lmod0vlid 19657 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4430, 42, 43syl2anc 587 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4526, 37, 443eqtrd 2837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑙( ·𝑠𝑊)𝑍))
4629, 18syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
47 simpl2r 1224 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
482, 7lspsnid 19758 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → 𝑍 ∈ (𝑁‘{𝑍}))
4910, 12, 48syl2anc 587 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝑁‘{𝑍}))
5029, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑍 ∈ (𝑁‘{𝑍}))
514, 6, 5, 16lssvscl 19720 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5230, 46, 47, 50, 51syl22anc 837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5345, 52eqeltrd 2890 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍}))
5453ex 416 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑍})))
5554necon3bd 3001 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑍}) → 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5625, 55mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
57 eqid 2798 . . . . . . . . 9 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
585, 32, 57drnginvrcl 19512 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
5922, 23, 56, 58syl3anc 1368 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
60493ad2ant1 1130 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍 ∈ (𝑁‘{𝑍}))
6115, 19, 38, 60, 51syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
624, 6, 5, 16lssvscl 19720 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
6315, 19, 59, 61, 62syl22anc 837 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
645, 32, 57drnginvrn0 19513 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
6522, 23, 56, 64syl3anc 1368 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
66 lspfixed.e . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
67663ad2ant1 1130 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
68 simpl3 1190 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
69 oveq1 7142 . . . . . . . . . . . . . . 15 (𝑙 = (0g‘(Scalar‘𝑊)) → (𝑙( ·𝑠𝑊)𝑍) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍))
702, 4, 6, 32, 33lmod0vs 19660 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7115, 39, 70syl2anc 587 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7269, 71sylan9eqr 2855 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) = 0 )
7372oveq2d 7151 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ((𝑘( ·𝑠𝑊)𝑌) + 0 ))
74113ad2ant1 1130 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌𝑉)
752, 4, 6, 5lmodvscl 19644 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
7615, 23, 74, 75syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
772, 3, 33lmod0vrid 19658 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7815, 76, 77syl2anc 587 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7978adantr 484 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
8068, 73, 793eqtrd 2837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠𝑊)𝑌))
812, 16, 7lspsncl 19742 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
8210, 11, 81syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
83823ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
842, 7lspsnid 19758 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
8510, 11, 84syl2anc 587 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
86853ad2ant1 1130 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑌}))
874, 6, 5, 16lssvscl 19720 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8815, 83, 23, 86, 87syl22anc 837 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8988adantr 484 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
9080, 89eqeltrd 2890 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑌}))
9190ex 416 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑌})))
9291necon3bd 3001 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑙 ≠ (0g‘(Scalar‘𝑊))))
9367, 92mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ≠ (0g‘(Scalar‘𝑊)))
94 simpl1 1188 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝜑)
9594, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
96 preq2 4630 . . . . . . . . . . . . . 14 (𝑍 = 0 → {𝑌, 𝑍} = {𝑌, 0 })
9796fveq2d 6649 . . . . . . . . . . . . 13 (𝑍 = 0 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌, 0 }))
982, 33, 7, 15, 74lsppr0 19857 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
9997, 98sylan9eqr 2855 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
10095, 99eleqtrd 2892 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌}))
101100ex 416 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑍 = 0𝑋 ∈ (𝑁‘{𝑌})))
102101necon3bd 3001 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑍0 ))
10367, 102mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍0 )
1042, 6, 4, 5, 32, 33, 20, 38, 39lvecvsn0 19874 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑙( ·𝑠𝑊)𝑍) ≠ 0 ↔ (𝑙 ≠ (0g‘(Scalar‘𝑊)) ∧ 𝑍0 )))
10593, 103, 104mpbir2and 712 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )
1062, 6, 4, 5, 32, 33, 20, 59, 41lvecvsn0 19874 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ↔ (((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )))
10765, 105, 106mpbir2and 712 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 )
108 eldifsn 4680 . . . . . 6 ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ↔ ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}) ∧ (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ))
10963, 107, 108sylanbrc 586 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }))
110 simp3 1135 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
1112, 3lmodvacl 19641 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
11215, 76, 41, 111syl3anc 1368 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
1132, 7lspsnid 19758 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11415, 112, 113syl2anc 587 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
115110, 114eqeltrd 2890 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1162, 4, 6, 5, 32, 7lspsnvs 19879 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊))) ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11720, 59, 65, 112, 116syl121anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1182, 3, 4, 6, 5lmodvsdi 19650 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
11915, 59, 76, 41, 118syl13anc 1369 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
120 eqid 2798 . . . . . . . . . . . . . . 15 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
121 eqid 2798 . . . . . . . . . . . . . . 15 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1225, 32, 120, 121, 57drnginvrl 19514 . . . . . . . . . . . . . 14 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
12322, 23, 56, 122syl3anc 1368 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
124123oveq1d 7150 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
1252, 4, 6, 5, 120lmodvsass 19652 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
12615, 59, 23, 74, 125syl13anc 1369 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
1272, 4, 6, 121lmodvs1 19655 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
12815, 74, 127syl2anc 587 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
129124, 126, 1283eqtr3d 2841 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) = 𝑌)
130129oveq1d 7150 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
131119, 130eqtrd 2833 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
132131sneqd 4537 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → {(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
133132fveq2d 6649 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
134117, 133eqtr3d 2835 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
135115, 134eleqtrd 2892 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
136 oveq2 7143 . . . . . . . . 9 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑌 + 𝑧) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
137136sneqd 4537 . . . . . . . 8 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → {(𝑌 + 𝑧)} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
138137fveq2d 6649 . . . . . . 7 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑁‘{(𝑌 + 𝑧)}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
139138eleq2d 2875 . . . . . 6 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}) ↔ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})))
140139rspcev 3571 . . . . 5 (((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ∧ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
141109, 135, 140syl2anc 587 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
1421413exp 1116 . . 3 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))))
143142rexlimdvv 3252 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)})))
14414, 143mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wrex 3107  cdif 3878  {csn 4525  {cpr 4527  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  1rcur 19244  invrcinvr 19417  DivRingcdr 19495  LModclmod 19627  LSubSpclss 19696  LSpanclspn 19736  LVecclvec 19867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868
This theorem is referenced by:  lsatfixedN  36305
  Copyright terms: Public domain W3C validator