MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspfixed Structured version   Visualization version   GIF version

Theorem lspfixed 20589
Description: Show membership in the span of the sum of two vectors, one of which (𝑌) is fixed in advance. (Contributed by NM, 27-May-2015.) (Revised by AV, 12-Jul-2022.)
Hypotheses
Ref Expression
lspfixed.v 𝑉 = (Base‘𝑊)
lspfixed.p + = (+g𝑊)
lspfixed.o 0 = (0g𝑊)
lspfixed.n 𝑁 = (LSpan‘𝑊)
lspfixed.w (𝜑𝑊 ∈ LVec)
lspfixed.y (𝜑𝑌𝑉)
lspfixed.z (𝜑𝑍𝑉)
lspfixed.e (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
lspfixed.f (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
lspfixed.g (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
Assertion
Ref Expression
lspfixed (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Distinct variable groups:   𝑧,𝑁   𝑧, 0   𝑧, +   𝑧,𝑊   𝑧,𝑋   𝑧,𝑌   𝑧,𝑍
Allowed substitution hints:   𝜑(𝑧)   𝑉(𝑧)

Proof of Theorem lspfixed
Dummy variables 𝑘 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspfixed.g . . 3 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2 lspfixed.v . . . 4 𝑉 = (Base‘𝑊)
3 lspfixed.p . . . 4 + = (+g𝑊)
4 eqid 2736 . . . 4 (Scalar‘𝑊) = (Scalar‘𝑊)
5 eqid 2736 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
6 eqid 2736 . . . 4 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 lspfixed.n . . . 4 𝑁 = (LSpan‘𝑊)
8 lspfixed.w . . . . 5 (𝜑𝑊 ∈ LVec)
9 lveclmod 20567 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
108, 9syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
11 lspfixed.y . . . 4 (𝜑𝑌𝑉)
12 lspfixed.z . . . 4 (𝜑𝑍𝑉)
132, 3, 4, 5, 6, 7, 10, 11, 12lspprel 20555 . . 3 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))))
141, 13mpbid 231 . 2 (𝜑 → ∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
15103ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LMod)
16 eqid 2736 . . . . . . . . . 10 (LSubSp‘𝑊) = (LSubSp‘𝑊)
172, 16, 7lspsncl 20438 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
1810, 12, 17syl2anc 584 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
19183ad2ant1 1133 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
2083ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑊 ∈ LVec)
214lvecdrng 20566 . . . . . . . . 9 (𝑊 ∈ LVec → (Scalar‘𝑊) ∈ DivRing)
2220, 21syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (Scalar‘𝑊) ∈ DivRing)
23 simp2l 1199 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
24 lspfixed.f . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
25243ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑍}))
26 simpl3 1193 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
27 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2827oveq1d 7372 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
29 simpl1 1191 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝜑)
3029, 10syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑊 ∈ LMod)
3129, 11syl 17 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌𝑉)
32 eqid 2736 . . . . . . . . . . . . . . . . 17 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
33 lspfixed.o . . . . . . . . . . . . . . . . 17 0 = (0g𝑊)
342, 4, 6, 32, 33lmod0vs 20355 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3530, 31, 34syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 0 )
3628, 35eqtrd 2776 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) = 0 )
3736oveq1d 7372 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ( 0 + (𝑙( ·𝑠𝑊)𝑍)))
38 simp2r 1200 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
39123ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍𝑉)
402, 4, 6, 5lmodvscl 20339 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍𝑉) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4115, 38, 39, 40syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
4241adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)
432, 3, 33lmod0vlid 20352 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4430, 42, 43syl2anc 584 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ( 0 + (𝑙( ·𝑠𝑊)𝑍)) = (𝑙( ·𝑠𝑊)𝑍))
4526, 37, 443eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑙( ·𝑠𝑊)𝑍))
4629, 18syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊))
47 simpl2r 1227 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑙 ∈ (Base‘(Scalar‘𝑊)))
482, 7lspsnid 20454 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → 𝑍 ∈ (𝑁‘{𝑍}))
4910, 12, 48syl2anc 584 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ (𝑁‘{𝑍}))
5029, 49syl 17 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑍 ∈ (𝑁‘{𝑍}))
514, 6, 5, 16lssvscl 20416 . . . . . . . . . . . . 13 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (𝑙 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑍 ∈ (𝑁‘{𝑍}))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5230, 46, 47, 50, 51syl22anc 837 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
5345, 52eqeltrd 2838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑍}))
5453ex 413 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑍})))
5554necon3bd 2957 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑍}) → 𝑘 ≠ (0g‘(Scalar‘𝑊))))
5625, 55mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
57 eqid 2736 . . . . . . . . 9 (invr‘(Scalar‘𝑊)) = (invr‘(Scalar‘𝑊))
585, 32, 57drnginvrcl 20205 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
5922, 23, 56, 58syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)))
60493ad2ant1 1133 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍 ∈ (𝑁‘{𝑍}))
6115, 19, 38, 60, 51syl22anc 837 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))
624, 6, 5, 16lssvscl 20416 . . . . . . 7 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑍}) ∈ (LSubSp‘𝑊)) ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ (𝑁‘{𝑍}))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
6315, 19, 59, 61, 62syl22anc 837 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}))
645, 32, 57drnginvrn0 20206 . . . . . . . 8 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
6522, 23, 56, 64syl3anc 1371 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)))
66 lspfixed.e . . . . . . . . . 10 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
67663ad2ant1 1133 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
68 simpl3 1193 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
69 oveq1 7364 . . . . . . . . . . . . . . 15 (𝑙 = (0g‘(Scalar‘𝑊)) → (𝑙( ·𝑠𝑊)𝑍) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍))
702, 4, 6, 32, 33lmod0vs 20355 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7115, 39, 70syl2anc 584 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑍) = 0 )
7269, 71sylan9eqr 2798 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑙( ·𝑠𝑊)𝑍) = 0 )
7372oveq2d 7373 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) = ((𝑘( ·𝑠𝑊)𝑌) + 0 ))
74113ad2ant1 1133 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌𝑉)
752, 4, 6, 5lmodvscl 20339 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
7615, 23, 74, 75syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉)
772, 3, 33lmod0vrid 20353 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7815, 76, 77syl2anc 584 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
7978adantr 481 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → ((𝑘( ·𝑠𝑊)𝑌) + 0 ) = (𝑘( ·𝑠𝑊)𝑌))
8068, 73, 793eqtrd 2780 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 = (𝑘( ·𝑠𝑊)𝑌))
812, 16, 7lspsncl 20438 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
8210, 11, 81syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
83823ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊))
842, 7lspsnid 20454 . . . . . . . . . . . . . . . 16 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → 𝑌 ∈ (𝑁‘{𝑌}))
8510, 11, 84syl2anc 584 . . . . . . . . . . . . . . 15 (𝜑𝑌 ∈ (𝑁‘{𝑌}))
86853ad2ant1 1133 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑌 ∈ (𝑁‘{𝑌}))
874, 6, 5, 16lssvscl 20416 . . . . . . . . . . . . . 14 (((𝑊 ∈ LMod ∧ (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌 ∈ (𝑁‘{𝑌}))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8815, 83, 23, 86, 87syl22anc 837 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
8988adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑌) ∈ (𝑁‘{𝑌}))
9080, 89eqeltrd 2838 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑙 = (0g‘(Scalar‘𝑊))) → 𝑋 ∈ (𝑁‘{𝑌}))
9190ex 413 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙 = (0g‘(Scalar‘𝑊)) → 𝑋 ∈ (𝑁‘{𝑌})))
9291necon3bd 2957 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑙 ≠ (0g‘(Scalar‘𝑊))))
9367, 92mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑙 ≠ (0g‘(Scalar‘𝑊)))
94 simpl1 1191 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝜑)
9594, 1syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
96 preq2 4695 . . . . . . . . . . . . . 14 (𝑍 = 0 → {𝑌, 𝑍} = {𝑌, 0 })
9796fveq2d 6846 . . . . . . . . . . . . 13 (𝑍 = 0 → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌, 0 }))
982, 33, 7, 15, 74lsppr0 20553 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{𝑌, 0 }) = (𝑁‘{𝑌}))
9997, 98sylan9eqr 2798 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → (𝑁‘{𝑌, 𝑍}) = (𝑁‘{𝑌}))
10095, 99eleqtrd 2840 . . . . . . . . . . 11 (((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) ∧ 𝑍 = 0 ) → 𝑋 ∈ (𝑁‘{𝑌}))
101100ex 413 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑍 = 0𝑋 ∈ (𝑁‘{𝑌})))
102101necon3bd 2957 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (¬ 𝑋 ∈ (𝑁‘{𝑌}) → 𝑍0 ))
10367, 102mpd 15 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑍0 )
1042, 6, 4, 5, 32, 33, 20, 38, 39lvecvsn0 20570 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑙( ·𝑠𝑊)𝑍) ≠ 0 ↔ (𝑙 ≠ (0g‘(Scalar‘𝑊)) ∧ 𝑍0 )))
10593, 103, 104mpbir2and 711 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )
1062, 6, 4, 5, 32, 33, 20, 59, 41lvecvsn0 20570 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ↔ (((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊)) ∧ (𝑙( ·𝑠𝑊)𝑍) ≠ 0 )))
10765, 105, 106mpbir2and 711 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 )
108 eldifsn 4747 . . . . . 6 ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ↔ ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{𝑍}) ∧ (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ≠ 0 ))
10963, 107, 108sylanbrc 583 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }))
110 simp3 1138 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))
1112, 3lmodvacl 20336 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
11215, 76, 41, 111syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉)
1132, 7lspsnid 20454 . . . . . . . 8 ((𝑊 ∈ LMod ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11415, 112, 113syl2anc 584 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
115110, 114eqeltrd 2838 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1162, 4, 6, 5, 32, 7lspsnvs 20575 . . . . . . . 8 ((𝑊 ∈ LVec ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ ((invr‘(Scalar‘𝑊))‘𝑘) ≠ (0g‘(Scalar‘𝑊))) ∧ ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) ∈ 𝑉) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
11720, 59, 65, 112, 116syl121anc 1375 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}))
1182, 3, 4, 6, 5lmodvsdi 20345 . . . . . . . . . . 11 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ (𝑘( ·𝑠𝑊)𝑌) ∈ 𝑉 ∧ (𝑙( ·𝑠𝑊)𝑍) ∈ 𝑉)) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
11915, 59, 76, 41, 118syl13anc 1372 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
120 eqid 2736 . . . . . . . . . . . . . . 15 (.r‘(Scalar‘𝑊)) = (.r‘(Scalar‘𝑊))
121 eqid 2736 . . . . . . . . . . . . . . 15 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
1225, 32, 120, 121, 57drnginvrl 20208 . . . . . . . . . . . . . 14 (((Scalar‘𝑊) ∈ DivRing ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
12322, 23, 56, 122syl3anc 1371 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘) = (1r‘(Scalar‘𝑊)))
124123oveq1d 7372 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌))
1252, 4, 6, 5, 120lmodvsass 20347 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ (((invr‘(Scalar‘𝑊))‘𝑘) ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑌𝑉)) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
12615, 59, 23, 74, 125syl13anc 1372 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)(.r‘(Scalar‘𝑊))𝑘)( ·𝑠𝑊)𝑌) = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)))
1272, 4, 6, 121lmodvs1 20350 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑌𝑉) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
12815, 74, 127syl2anc 584 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((1r‘(Scalar‘𝑊))( ·𝑠𝑊)𝑌) = 𝑌)
129124, 126, 1283eqtr3d 2784 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) = 𝑌)
130129oveq1d 7372 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑘( ·𝑠𝑊)𝑌)) + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
131119, 130eqtrd 2776 . . . . . . . . 9 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
132131sneqd 4598 . . . . . . . 8 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → {(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
133132fveq2d 6846 . . . . . . 7 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{(((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
134117, 133eqtr3d 2778 . . . . . 6 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → (𝑁‘{((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
135115, 134eleqtrd 2840 . . . . 5 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
136 oveq2 7365 . . . . . . . . 9 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑌 + 𝑧) = (𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍))))
137136sneqd 4598 . . . . . . . 8 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → {(𝑌 + 𝑧)} = {(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})
138137fveq2d 6846 . . . . . . 7 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑁‘{(𝑌 + 𝑧)}) = (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))}))
139138eleq2d 2823 . . . . . 6 (𝑧 = (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) → (𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}) ↔ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})))
140139rspcev 3581 . . . . 5 (((((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)) ∈ ((𝑁‘{𝑍}) ∖ { 0 }) ∧ 𝑋 ∈ (𝑁‘{(𝑌 + (((invr‘(Scalar‘𝑊))‘𝑘)( ·𝑠𝑊)(𝑙( ·𝑠𝑊)𝑍)))})) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
141109, 135, 140syl2anc 584 . . . 4 ((𝜑 ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍))) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
1421413exp 1119 . . 3 (𝜑 → ((𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑙 ∈ (Base‘(Scalar‘𝑊))) → (𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))))
143142rexlimdvv 3204 . 2 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))∃𝑙 ∈ (Base‘(Scalar‘𝑊))𝑋 = ((𝑘( ·𝑠𝑊)𝑌) + (𝑙( ·𝑠𝑊)𝑍)) → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)})))
14414, 143mpd 15 1 (𝜑 → ∃𝑧 ∈ ((𝑁‘{𝑍}) ∖ { 0 })𝑋 ∈ (𝑁‘{(𝑌 + 𝑧)}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  cdif 3907  {csn 4586  {cpr 4588  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  1rcur 19913  invrcinvr 20100  DivRingcdr 20185  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564
This theorem is referenced by:  lsatfixedN  37471
  Copyright terms: Public domain W3C validator