Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem4 Structured version   Visualization version   GIF version

Theorem lshpkrlem4 39113
Description: Lemma for lshpkrex 39118. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   + (𝑣,𝑢,𝑠,𝑟)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   · (𝑣,𝑢,𝑠,𝑟)   𝑈(𝑣,𝑢,𝑠,𝑟)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐾(𝑦,𝑣,𝑢,𝑠,𝑟)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑋(𝑣,𝑢,𝑠,𝑟)   0 (𝑥,𝑦,𝑣,𝑢,𝑠,𝑟,𝑙)   𝑍(𝑣,𝑢,𝑠,𝑟)

Proof of Theorem lshpkrlem4
StepHypRef Expression
1 simp3l 1202 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21oveq2d 7406 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → (𝑙 · 𝑢) = (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))))
3 simp3r 1203 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42, 3oveq12d 7408 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))))
5 simpl1 1192 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝜑)
6 lshpkrlem.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
7 lveclmod 21020 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
85, 6, 73syl 18 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑊 ∈ LMod)
9 simpl2 1193 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑙𝐾)
10 simpr2 1196 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑟𝑉)
11 simpl3 1194 . . . . . . . . 9 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑢𝑉)
12 lshpkrlem.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
13 lshpkrlem.a . . . . . . . . . 10 + = (+g𝑊)
14 lshpkrlem.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
15 lshpkrlem.p . . . . . . . . . 10 = (LSSum‘𝑊)
16 lshpkrlem.h . . . . . . . . . 10 𝐻 = (LSHyp‘𝑊)
176adantr 480 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑊 ∈ LVec)
18 lshpkrlem.u . . . . . . . . . . 11 (𝜑𝑈𝐻)
1918adantr 480 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑈𝐻)
20 lshpkrlem.z . . . . . . . . . . 11 (𝜑𝑍𝑉)
2120adantr 480 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑍𝑉)
22 simpr 484 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑢𝑉)
23 lshpkrlem.e . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
2423adantr 480 . . . . . . . . . 10 ((𝜑𝑢𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
25 lshpkrlem.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
26 lshpkrlem.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
27 lshpkrlem.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
28 lshpkrlem.o . . . . . . . . . 10 0 = (0g𝐷)
29 lshpkrlem.g . . . . . . . . . 10 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
3012, 13, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29lshpkrlem2 39111 . . . . . . . . 9 ((𝜑𝑢𝑉) → (𝐺𝑢) ∈ 𝐾)
315, 11, 30syl2anc 584 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑢) ∈ 𝐾)
325, 20syl 17 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑍𝑉)
3312, 25, 27, 26lmodvscl 20791 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
348, 31, 32, 33syl3anc 1373 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
3512, 13, 25, 27, 26lmodvsdi 20798 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙𝐾𝑟𝑉 ∧ ((𝐺𝑢) · 𝑍) ∈ 𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
368, 9, 10, 34, 35syl13anc 1374 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
37 eqid 2730 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
3812, 25, 27, 26, 37lmodvsass 20800 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
398, 9, 31, 32, 38syl13anc 1374 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
4039oveq2d 7406 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
4136, 40eqtr4d 2768 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)))
4241oveq1d 7405 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))))
4312, 25, 27, 26lmodvscl 20791 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑟𝑉) → (𝑙 · 𝑟) ∈ 𝑉)
448, 9, 10, 43syl3anc 1373 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · 𝑟) ∈ 𝑉)
4525, 26, 37lmodmcl 20786 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
468, 9, 31, 45syl3anc 1373 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
4712, 25, 27, 26lmodvscl 20791 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾𝑍𝑉) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
488, 46, 32, 47syl3anc 1373 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
49 simpr3 1197 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑠𝑉)
50 simpr1 1195 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑣𝑉)
516adantr 480 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
5218adantr 480 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑈𝐻)
5320adantr 480 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑍𝑉)
54 simpr 484 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑣𝑉)
5523adantr 480 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
5612, 13, 14, 15, 16, 51, 52, 53, 54, 55, 25, 26, 27, 28, 29lshpkrlem2 39111 . . . . . . . 8 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
575, 50, 56syl2anc 584 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑣) ∈ 𝐾)
5812, 25, 27, 26lmodvscl 20791 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
598, 57, 32, 58syl3anc 1373 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
6012, 13lmod4 20825 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑙 · 𝑟) ∈ 𝑉 ∧ ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉) ∧ (𝑠𝑉 ∧ ((𝐺𝑣) · 𝑍) ∈ 𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
618, 44, 48, 49, 59, 60syl122anc 1381 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
62 eqid 2730 . . . . . . . 8 (+g𝐷) = (+g𝐷)
6312, 13, 25, 27, 26, 62lmodvsdir 20799 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾 ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
648, 46, 57, 32, 63syl13anc 1374 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
6564oveq2d 7406 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
6661, 65eqtr4d 2768 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
6742, 66eqtrd 2765 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
68673adant3 1132 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
694, 68eqtrd 2765 1 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3054  {csn 4592  cmpt 5191  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  LSSumclsm 19571  LModclmod 20773  LSpanclspn 20884  LVecclvec 21016  LSHypclsh 38975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-subg 19062  df-cntz 19256  df-lsm 19573  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-drng 20647  df-lmod 20775  df-lss 20845  df-lsp 20885  df-lvec 21017  df-lshyp 38977
This theorem is referenced by:  lshpkrlem5  39114
  Copyright terms: Public domain W3C validator