Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem4 Structured version   Visualization version   GIF version

Theorem lshpkrlem4 38715
Description: Lemma for lshpkrex 38720. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   + (𝑣,𝑢,𝑠,𝑟)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   · (𝑣,𝑢,𝑠,𝑟)   𝑈(𝑣,𝑢,𝑠,𝑟)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐾(𝑦,𝑣,𝑢,𝑠,𝑟)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑋(𝑣,𝑢,𝑠,𝑟)   0 (𝑥,𝑦,𝑣,𝑢,𝑠,𝑟,𝑙)   𝑍(𝑣,𝑢,𝑠,𝑟)

Proof of Theorem lshpkrlem4
StepHypRef Expression
1 simp3l 1198 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21oveq2d 7435 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → (𝑙 · 𝑢) = (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))))
3 simp3r 1199 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42, 3oveq12d 7437 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))))
5 simpl1 1188 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝜑)
6 lshpkrlem.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
7 lveclmod 21003 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
85, 6, 73syl 18 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑊 ∈ LMod)
9 simpl2 1189 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑙𝐾)
10 simpr2 1192 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑟𝑉)
11 simpl3 1190 . . . . . . . . 9 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑢𝑉)
12 lshpkrlem.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
13 lshpkrlem.a . . . . . . . . . 10 + = (+g𝑊)
14 lshpkrlem.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
15 lshpkrlem.p . . . . . . . . . 10 = (LSSum‘𝑊)
16 lshpkrlem.h . . . . . . . . . 10 𝐻 = (LSHyp‘𝑊)
176adantr 479 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑊 ∈ LVec)
18 lshpkrlem.u . . . . . . . . . . 11 (𝜑𝑈𝐻)
1918adantr 479 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑈𝐻)
20 lshpkrlem.z . . . . . . . . . . 11 (𝜑𝑍𝑉)
2120adantr 479 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑍𝑉)
22 simpr 483 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑢𝑉)
23 lshpkrlem.e . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
2423adantr 479 . . . . . . . . . 10 ((𝜑𝑢𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
25 lshpkrlem.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
26 lshpkrlem.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
27 lshpkrlem.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
28 lshpkrlem.o . . . . . . . . . 10 0 = (0g𝐷)
29 lshpkrlem.g . . . . . . . . . 10 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
3012, 13, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29lshpkrlem2 38713 . . . . . . . . 9 ((𝜑𝑢𝑉) → (𝐺𝑢) ∈ 𝐾)
315, 11, 30syl2anc 582 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑢) ∈ 𝐾)
325, 20syl 17 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑍𝑉)
3312, 25, 27, 26lmodvscl 20773 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
348, 31, 32, 33syl3anc 1368 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
3512, 13, 25, 27, 26lmodvsdi 20780 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙𝐾𝑟𝑉 ∧ ((𝐺𝑢) · 𝑍) ∈ 𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
368, 9, 10, 34, 35syl13anc 1369 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
37 eqid 2725 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
3812, 25, 27, 26, 37lmodvsass 20782 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
398, 9, 31, 32, 38syl13anc 1369 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
4039oveq2d 7435 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
4136, 40eqtr4d 2768 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)))
4241oveq1d 7434 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))))
4312, 25, 27, 26lmodvscl 20773 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑟𝑉) → (𝑙 · 𝑟) ∈ 𝑉)
448, 9, 10, 43syl3anc 1368 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · 𝑟) ∈ 𝑉)
4525, 26, 37lmodmcl 20768 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
468, 9, 31, 45syl3anc 1368 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
4712, 25, 27, 26lmodvscl 20773 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾𝑍𝑉) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
488, 46, 32, 47syl3anc 1368 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
49 simpr3 1193 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑠𝑉)
50 simpr1 1191 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑣𝑉)
516adantr 479 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
5218adantr 479 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑈𝐻)
5320adantr 479 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑍𝑉)
54 simpr 483 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑣𝑉)
5523adantr 479 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
5612, 13, 14, 15, 16, 51, 52, 53, 54, 55, 25, 26, 27, 28, 29lshpkrlem2 38713 . . . . . . . 8 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
575, 50, 56syl2anc 582 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑣) ∈ 𝐾)
5812, 25, 27, 26lmodvscl 20773 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
598, 57, 32, 58syl3anc 1368 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
6012, 13lmod4 20807 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑙 · 𝑟) ∈ 𝑉 ∧ ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉) ∧ (𝑠𝑉 ∧ ((𝐺𝑣) · 𝑍) ∈ 𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
618, 44, 48, 49, 59, 60syl122anc 1376 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
62 eqid 2725 . . . . . . . 8 (+g𝐷) = (+g𝐷)
6312, 13, 25, 27, 26, 62lmodvsdir 20781 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾 ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
648, 46, 57, 32, 63syl13anc 1369 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
6564oveq2d 7435 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
6661, 65eqtr4d 2768 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
6742, 66eqtrd 2765 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
68673adant3 1129 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
694, 68eqtrd 2765 1 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  wrex 3059  {csn 4630  cmpt 5232  cfv 6549  crio 7374  (class class class)co 7419  Basecbs 17183  +gcplusg 17236  .rcmulr 17237  Scalarcsca 17239   ·𝑠 cvsca 17240  0gc0g 17424  LSSumclsm 19601  LModclmod 20755  LSpanclspn 20867  LVecclvec 20999  LSHypclsh 38577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-tpos 8232  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-3 12309  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-mulr 17250  df-0g 17426  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-grp 18901  df-minusg 18902  df-sbg 18903  df-subg 19086  df-cntz 19280  df-lsm 19603  df-cmn 19749  df-abl 19750  df-mgp 20087  df-rng 20105  df-ur 20134  df-ring 20187  df-oppr 20285  df-dvdsr 20308  df-unit 20309  df-invr 20339  df-drng 20638  df-lmod 20757  df-lss 20828  df-lsp 20868  df-lvec 21000  df-lshyp 38579
This theorem is referenced by:  lshpkrlem5  38716
  Copyright terms: Public domain W3C validator