Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem4 Structured version   Visualization version   GIF version

Theorem lshpkrlem4 37575
Description: Lemma for lshpkrex 37580. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   + (𝑣,𝑢,𝑠,𝑟)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   · (𝑣,𝑢,𝑠,𝑟)   𝑈(𝑣,𝑢,𝑠,𝑟)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐾(𝑦,𝑣,𝑢,𝑠,𝑟)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑋(𝑣,𝑢,𝑠,𝑟)   0 (𝑥,𝑦,𝑣,𝑢,𝑠,𝑟,𝑙)   𝑍(𝑣,𝑢,𝑠,𝑟)

Proof of Theorem lshpkrlem4
StepHypRef Expression
1 simp3l 1201 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21oveq2d 7373 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → (𝑙 · 𝑢) = (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))))
3 simp3r 1202 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42, 3oveq12d 7375 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))))
5 simpl1 1191 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝜑)
6 lshpkrlem.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
7 lveclmod 20567 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
85, 6, 73syl 18 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑊 ∈ LMod)
9 simpl2 1192 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑙𝐾)
10 simpr2 1195 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑟𝑉)
11 simpl3 1193 . . . . . . . . 9 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑢𝑉)
12 lshpkrlem.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
13 lshpkrlem.a . . . . . . . . . 10 + = (+g𝑊)
14 lshpkrlem.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
15 lshpkrlem.p . . . . . . . . . 10 = (LSSum‘𝑊)
16 lshpkrlem.h . . . . . . . . . 10 𝐻 = (LSHyp‘𝑊)
176adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑊 ∈ LVec)
18 lshpkrlem.u . . . . . . . . . . 11 (𝜑𝑈𝐻)
1918adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑈𝐻)
20 lshpkrlem.z . . . . . . . . . . 11 (𝜑𝑍𝑉)
2120adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑍𝑉)
22 simpr 485 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑢𝑉)
23 lshpkrlem.e . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
2423adantr 481 . . . . . . . . . 10 ((𝜑𝑢𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
25 lshpkrlem.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
26 lshpkrlem.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
27 lshpkrlem.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
28 lshpkrlem.o . . . . . . . . . 10 0 = (0g𝐷)
29 lshpkrlem.g . . . . . . . . . 10 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
3012, 13, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29lshpkrlem2 37573 . . . . . . . . 9 ((𝜑𝑢𝑉) → (𝐺𝑢) ∈ 𝐾)
315, 11, 30syl2anc 584 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑢) ∈ 𝐾)
325, 20syl 17 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑍𝑉)
3312, 25, 27, 26lmodvscl 20339 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
348, 31, 32, 33syl3anc 1371 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
3512, 13, 25, 27, 26lmodvsdi 20345 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙𝐾𝑟𝑉 ∧ ((𝐺𝑢) · 𝑍) ∈ 𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
368, 9, 10, 34, 35syl13anc 1372 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
37 eqid 2736 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
3812, 25, 27, 26, 37lmodvsass 20347 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
398, 9, 31, 32, 38syl13anc 1372 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
4039oveq2d 7373 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
4136, 40eqtr4d 2779 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)))
4241oveq1d 7372 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))))
4312, 25, 27, 26lmodvscl 20339 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑟𝑉) → (𝑙 · 𝑟) ∈ 𝑉)
448, 9, 10, 43syl3anc 1371 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · 𝑟) ∈ 𝑉)
4525, 26, 37lmodmcl 20334 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
468, 9, 31, 45syl3anc 1371 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
4712, 25, 27, 26lmodvscl 20339 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾𝑍𝑉) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
488, 46, 32, 47syl3anc 1371 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
49 simpr3 1196 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑠𝑉)
50 simpr1 1194 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑣𝑉)
516adantr 481 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
5218adantr 481 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑈𝐻)
5320adantr 481 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑍𝑉)
54 simpr 485 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑣𝑉)
5523adantr 481 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
5612, 13, 14, 15, 16, 51, 52, 53, 54, 55, 25, 26, 27, 28, 29lshpkrlem2 37573 . . . . . . . 8 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
575, 50, 56syl2anc 584 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑣) ∈ 𝐾)
5812, 25, 27, 26lmodvscl 20339 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
598, 57, 32, 58syl3anc 1371 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
6012, 13lmod4 20372 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑙 · 𝑟) ∈ 𝑉 ∧ ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉) ∧ (𝑠𝑉 ∧ ((𝐺𝑣) · 𝑍) ∈ 𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
618, 44, 48, 49, 59, 60syl122anc 1379 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
62 eqid 2736 . . . . . . . 8 (+g𝐷) = (+g𝐷)
6312, 13, 25, 27, 26, 62lmodvsdir 20346 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾 ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
648, 46, 57, 32, 63syl13anc 1372 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
6564oveq2d 7373 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
6661, 65eqtr4d 2779 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
6742, 66eqtrd 2776 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
68673adant3 1132 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
694, 68eqtrd 2776 1 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3073  {csn 4586  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  LSSumclsm 19416  LModclmod 20322  LSpanclspn 20432  LVecclvec 20563  LSHypclsh 37437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lshyp 37439
This theorem is referenced by:  lshpkrlem5  37576
  Copyright terms: Public domain W3C validator