Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lshpkrlem4 Structured version   Visualization version   GIF version

Theorem lshpkrlem4 36409
Description: Lemma for lshpkrex 36414. Part of showing linearity of 𝐺. (Contributed by NM, 16-Jul-2014.)
Hypotheses
Ref Expression
lshpkrlem.v 𝑉 = (Base‘𝑊)
lshpkrlem.a + = (+g𝑊)
lshpkrlem.n 𝑁 = (LSpan‘𝑊)
lshpkrlem.p = (LSSum‘𝑊)
lshpkrlem.h 𝐻 = (LSHyp‘𝑊)
lshpkrlem.w (𝜑𝑊 ∈ LVec)
lshpkrlem.u (𝜑𝑈𝐻)
lshpkrlem.z (𝜑𝑍𝑉)
lshpkrlem.x (𝜑𝑋𝑉)
lshpkrlem.e (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
lshpkrlem.d 𝐷 = (Scalar‘𝑊)
lshpkrlem.k 𝐾 = (Base‘𝐷)
lshpkrlem.t · = ( ·𝑠𝑊)
lshpkrlem.o 0 = (0g𝐷)
lshpkrlem.g 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
Assertion
Ref Expression
lshpkrlem4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Distinct variable groups:   𝑥,𝑘,𝑦, +   𝑘,𝐾,𝑥   0 ,𝑘   · ,𝑘,𝑥,𝑦   𝑈,𝑘,𝑥,𝑦   𝑥,𝑉   𝑘,𝑋,𝑥,𝑦   𝑘,𝑍,𝑥,𝑦   + ,𝑙   𝐺,𝑙   𝐾,𝑙   𝑈,𝑙   𝑋,𝑙   𝑍,𝑙,𝑘,𝑥,𝑦   · ,𝑙   𝑢,𝑘,𝑣,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐷(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   + (𝑣,𝑢,𝑠,𝑟)   (𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   · (𝑣,𝑢,𝑠,𝑟)   𝑈(𝑣,𝑢,𝑠,𝑟)   𝐺(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟)   𝐻(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝐾(𝑦,𝑣,𝑢,𝑠,𝑟)   𝑁(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑉(𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑊(𝑥,𝑦,𝑣,𝑢,𝑘,𝑠,𝑟,𝑙)   𝑋(𝑣,𝑢,𝑠,𝑟)   0 (𝑥,𝑦,𝑣,𝑢,𝑠,𝑟,𝑙)   𝑍(𝑣,𝑢,𝑠,𝑟)

Proof of Theorem lshpkrlem4
StepHypRef Expression
1 simp3l 1198 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)))
21oveq2d 7151 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → (𝑙 · 𝑢) = (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))))
3 simp3r 1199 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))
42, 3oveq12d 7153 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))))
5 simpl1 1188 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝜑)
6 lshpkrlem.w . . . . . . . 8 (𝜑𝑊 ∈ LVec)
7 lveclmod 19871 . . . . . . . 8 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
85, 6, 73syl 18 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑊 ∈ LMod)
9 simpl2 1189 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑙𝐾)
10 simpr2 1192 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑟𝑉)
11 simpl3 1190 . . . . . . . . 9 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑢𝑉)
12 lshpkrlem.v . . . . . . . . . 10 𝑉 = (Base‘𝑊)
13 lshpkrlem.a . . . . . . . . . 10 + = (+g𝑊)
14 lshpkrlem.n . . . . . . . . . 10 𝑁 = (LSpan‘𝑊)
15 lshpkrlem.p . . . . . . . . . 10 = (LSSum‘𝑊)
16 lshpkrlem.h . . . . . . . . . 10 𝐻 = (LSHyp‘𝑊)
176adantr 484 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑊 ∈ LVec)
18 lshpkrlem.u . . . . . . . . . . 11 (𝜑𝑈𝐻)
1918adantr 484 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑈𝐻)
20 lshpkrlem.z . . . . . . . . . . 11 (𝜑𝑍𝑉)
2120adantr 484 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑍𝑉)
22 simpr 488 . . . . . . . . . 10 ((𝜑𝑢𝑉) → 𝑢𝑉)
23 lshpkrlem.e . . . . . . . . . . 11 (𝜑 → (𝑈 (𝑁‘{𝑍})) = 𝑉)
2423adantr 484 . . . . . . . . . 10 ((𝜑𝑢𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
25 lshpkrlem.d . . . . . . . . . 10 𝐷 = (Scalar‘𝑊)
26 lshpkrlem.k . . . . . . . . . 10 𝐾 = (Base‘𝐷)
27 lshpkrlem.t . . . . . . . . . 10 · = ( ·𝑠𝑊)
28 lshpkrlem.o . . . . . . . . . 10 0 = (0g𝐷)
29 lshpkrlem.g . . . . . . . . . 10 𝐺 = (𝑥𝑉 ↦ (𝑘𝐾𝑦𝑈 𝑥 = (𝑦 + (𝑘 · 𝑍))))
3012, 13, 14, 15, 16, 17, 19, 21, 22, 24, 25, 26, 27, 28, 29lshpkrlem2 36407 . . . . . . . . 9 ((𝜑𝑢𝑉) → (𝐺𝑢) ∈ 𝐾)
315, 11, 30syl2anc 587 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑢) ∈ 𝐾)
325, 20syl 17 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑍𝑉)
3312, 25, 27, 26lmodvscl 19644 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
348, 31, 32, 33syl3anc 1368 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑢) · 𝑍) ∈ 𝑉)
3512, 13, 25, 27, 26lmodvsdi 19650 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙𝐾𝑟𝑉 ∧ ((𝐺𝑢) · 𝑍) ∈ 𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
368, 9, 10, 34, 35syl13anc 1369 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
37 eqid 2798 . . . . . . . . 9 (.r𝐷) = (.r𝐷)
3812, 25, 27, 26, 37lmodvsass 19652 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾𝑍𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
398, 9, 31, 32, 38syl13anc 1369 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) = (𝑙 · ((𝐺𝑢) · 𝑍)))
4039oveq2d 7151 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) = ((𝑙 · 𝑟) + (𝑙 · ((𝐺𝑢) · 𝑍))))
4136, 40eqtr4d 2836 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) = ((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)))
4241oveq1d 7150 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))))
4312, 25, 27, 26lmodvscl 19644 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑙𝐾𝑟𝑉) → (𝑙 · 𝑟) ∈ 𝑉)
448, 9, 10, 43syl3anc 1368 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙 · 𝑟) ∈ 𝑉)
4525, 26, 37lmodmcl 19639 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑙𝐾 ∧ (𝐺𝑢) ∈ 𝐾) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
468, 9, 31, 45syl3anc 1368 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾)
4712, 25, 27, 26lmodvscl 19644 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾𝑍𝑉) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
488, 46, 32, 47syl3anc 1368 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉)
49 simpr3 1193 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑠𝑉)
50 simpr1 1191 . . . . . . . 8 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → 𝑣𝑉)
516adantr 484 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑊 ∈ LVec)
5218adantr 484 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑈𝐻)
5320adantr 484 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑍𝑉)
54 simpr 488 . . . . . . . . 9 ((𝜑𝑣𝑉) → 𝑣𝑉)
5523adantr 484 . . . . . . . . 9 ((𝜑𝑣𝑉) → (𝑈 (𝑁‘{𝑍})) = 𝑉)
5612, 13, 14, 15, 16, 51, 52, 53, 54, 55, 25, 26, 27, 28, 29lshpkrlem2 36407 . . . . . . . 8 ((𝜑𝑣𝑉) → (𝐺𝑣) ∈ 𝐾)
575, 50, 56syl2anc 587 . . . . . . 7 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (𝐺𝑣) ∈ 𝐾)
5812, 25, 27, 26lmodvscl 19644 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
598, 57, 32, 58syl3anc 1368 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝐺𝑣) · 𝑍) ∈ 𝑉)
6012, 13lmod4 19677 . . . . . 6 ((𝑊 ∈ LMod ∧ ((𝑙 · 𝑟) ∈ 𝑉 ∧ ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) ∈ 𝑉) ∧ (𝑠𝑉 ∧ ((𝐺𝑣) · 𝑍) ∈ 𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
618, 44, 48, 49, 59, 60syl122anc 1376 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
62 eqid 2798 . . . . . . . 8 (+g𝐷) = (+g𝐷)
6312, 13, 25, 27, 26, 62lmodvsdir 19651 . . . . . . 7 ((𝑊 ∈ LMod ∧ ((𝑙(.r𝐷)(𝐺𝑢)) ∈ 𝐾 ∧ (𝐺𝑣) ∈ 𝐾𝑍𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
648, 46, 57, 32, 63syl13anc 1369 . . . . . 6 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍) = (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍)))
6564oveq2d 7151 . . . . 5 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍) + ((𝐺𝑣) · 𝑍))))
6661, 65eqtr4d 2836 . . . 4 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → (((𝑙 · 𝑟) + ((𝑙(.r𝐷)(𝐺𝑢)) · 𝑍)) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
6742, 66eqtrd 2833 . . 3 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉)) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
68673adant3 1129 . 2 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · (𝑟 + ((𝐺𝑢) · 𝑍))) + (𝑠 + ((𝐺𝑣) · 𝑍))) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
694, 68eqtrd 2833 1 (((𝜑𝑙𝐾𝑢𝑉) ∧ (𝑣𝑉𝑟𝑉𝑠𝑉) ∧ (𝑢 = (𝑟 + ((𝐺𝑢) · 𝑍)) ∧ 𝑣 = (𝑠 + ((𝐺𝑣) · 𝑍)))) → ((𝑙 · 𝑢) + 𝑣) = (((𝑙 · 𝑟) + 𝑠) + (((𝑙(.r𝐷)(𝐺𝑢))(+g𝐷)(𝐺𝑣)) · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  {csn 4525  cmpt 5110  cfv 6324  crio 7092  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Scalarcsca 16560   ·𝑠 cvsca 16561  0gc0g 16705  LSSumclsm 18751  LModclmod 19627  LSpanclspn 19736  LVecclvec 19867  LSHypclsh 36271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-drng 19497  df-lmod 19629  df-lss 19697  df-lsp 19737  df-lvec 19868  df-lshyp 36273
This theorem is referenced by:  lshpkrlem5  36410
  Copyright terms: Public domain W3C validator