MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcl Structured version   Visualization version   GIF version

Theorem lsmcl 21041
Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcl.s 𝑆 = (LSubSp‘𝑊)
lsmcl.p = (LSSum‘𝑊)
Assertion
Ref Expression
lsmcl ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)

Proof of Theorem lsmcl
Dummy variables 𝑎 𝑑 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodabl 20866 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
213ad2ant1 1133 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑊 ∈ Abel)
3 lsmcl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
43lsssubg 20914 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
543adant3 1132 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
63lsssubg 20914 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
763adant2 1131 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
8 lsmcl.p . . . 4 = (LSSum‘𝑊)
98lsmsubg2 19840 . . 3 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
102, 5, 7, 9syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
11 eqid 2735 . . . . . . . 8 (+g𝑊) = (+g𝑊)
1211, 8lsmelval 19630 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
135, 7, 12syl2anc 584 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
1413adantr 480 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
15 simpll1 1213 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑊 ∈ LMod)
16 simplr 768 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
17 simpll2 1214 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇𝑆)
18 simprl 770 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑𝑇)
19 eqid 2735 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2019, 3lssel 20894 . . . . . . . . . 10 ((𝑇𝑆𝑑𝑇) → 𝑑 ∈ (Base‘𝑊))
2117, 18, 20syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑 ∈ (Base‘𝑊))
22 simpll3 1215 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈𝑆)
23 simprr 772 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒𝑈)
2419, 3lssel 20894 . . . . . . . . . 10 ((𝑈𝑆𝑒𝑈) → 𝑒 ∈ (Base‘𝑊))
2522, 23, 24syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒 ∈ (Base‘𝑊))
26 eqid 2735 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
27 eqid 2735 . . . . . . . . . 10 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2735 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2919, 11, 26, 27, 28lmodvsdi 20842 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑 ∈ (Base‘𝑊) ∧ 𝑒 ∈ (Base‘𝑊))) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3015, 16, 21, 25, 29syl13anc 1374 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3115, 17, 4syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
3215, 22, 6syl2anc 584 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
3326, 27, 28, 3lssvscl 20912 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑇𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑𝑇)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3415, 17, 16, 18, 33syl22anc 838 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3526, 27, 28, 3lssvscl 20912 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3615, 22, 16, 23, 35syl22anc 838 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3711, 8lsmelvali 19631 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) ∧ ((𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇 ∧ (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3831, 32, 34, 36, 37syl22anc 838 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3930, 38eqeltrd 2834 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈))
40 oveq2 7413 . . . . . . . 8 (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) = (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)))
4140eleq1d 2819 . . . . . . 7 (𝑢 = (𝑑(+g𝑊)𝑒) → ((𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈) ↔ (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈)))
4239, 41syl5ibrcom 247 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4342rexlimdvva 3198 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4414, 43sylbid 240 . . . 4 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4544impr 454 . . 3 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (𝑇 𝑈))) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4645ralrimivva 3187 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4726, 28, 19, 27, 3islss4 20919 . . 3 (𝑊 ∈ LMod → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
48473ad2ant1 1133 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
4910, 46, 48mpbir2and 713 1 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  Scalarcsca 17274   ·𝑠 cvsca 17275  SubGrpcsubg 19103  LSSumclsm 19615  Abelcabl 19762  LModclmod 20817  LSubSpclss 20888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-subg 19106  df-cntz 19300  df-lsm 19617  df-cmn 19763  df-abl 19764  df-mgp 20101  df-ur 20142  df-ring 20195  df-lmod 20819  df-lss 20889
This theorem is referenced by:  lsmelval2  21043  lsmsp  21044  lspprabs  21053  pj1lmhm  21058  lspabs3  21082  pjth  25391  lshpnelb  39002  lsmsat  39026  lsmcv2  39047  lcvat  39048  lcvexchlem4  39055  lcvexchlem5  39056  lcv1  39059  lsatexch  39061  lsatcv0eq  39065  lsatcvatlem  39067  lsatcvat2  39069  lsatcvat3  39070  lkrlsp  39120  dia2dimlem7  41089  dihjustlem  41235  dihord1  41237  dihlsscpre  41253  dihjatcclem2  41438  dihjat1lem  41447  dochexmidlem5  41483  dochexmidlem6  41484  dochexmidlem8  41486  lcfrlem23  41584  mapdlsmcl  41682  mapdlsm  41683  mapdpglem1  41691  mapdpglem2a  41693  mapdindp0  41738  mapdheq4lem  41750  mapdh6lem1N  41752  mapdh6lem2N  41753  hdmap1l6lem1  41826  hdmap1l6lem2  41827  hdmaprnlem3eN  41877  kercvrlsm  43107
  Copyright terms: Public domain W3C validator