MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcl Structured version   Visualization version   GIF version

Theorem lsmcl 19848
Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcl.s 𝑆 = (LSubSp‘𝑊)
lsmcl.p = (LSSum‘𝑊)
Assertion
Ref Expression
lsmcl ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)

Proof of Theorem lsmcl
Dummy variables 𝑎 𝑑 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodabl 19674 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
213ad2ant1 1130 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑊 ∈ Abel)
3 lsmcl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
43lsssubg 19722 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
543adant3 1129 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
63lsssubg 19722 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
763adant2 1128 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
8 lsmcl.p . . . 4 = (LSSum‘𝑊)
98lsmsubg2 18972 . . 3 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
102, 5, 7, 9syl3anc 1368 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
11 eqid 2798 . . . . . . . 8 (+g𝑊) = (+g𝑊)
1211, 8lsmelval 18766 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
135, 7, 12syl2anc 587 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
1413adantr 484 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
15 simpll1 1209 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑊 ∈ LMod)
16 simplr 768 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
17 simpll2 1210 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇𝑆)
18 simprl 770 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑𝑇)
19 eqid 2798 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2019, 3lssel 19702 . . . . . . . . . 10 ((𝑇𝑆𝑑𝑇) → 𝑑 ∈ (Base‘𝑊))
2117, 18, 20syl2anc 587 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑 ∈ (Base‘𝑊))
22 simpll3 1211 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈𝑆)
23 simprr 772 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒𝑈)
2419, 3lssel 19702 . . . . . . . . . 10 ((𝑈𝑆𝑒𝑈) → 𝑒 ∈ (Base‘𝑊))
2522, 23, 24syl2anc 587 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒 ∈ (Base‘𝑊))
26 eqid 2798 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
27 eqid 2798 . . . . . . . . . 10 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2798 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2919, 11, 26, 27, 28lmodvsdi 19650 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑 ∈ (Base‘𝑊) ∧ 𝑒 ∈ (Base‘𝑊))) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3015, 16, 21, 25, 29syl13anc 1369 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3115, 17, 4syl2anc 587 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
3215, 22, 6syl2anc 587 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
3326, 27, 28, 3lssvscl 19720 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑇𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑𝑇)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3415, 17, 16, 18, 33syl22anc 837 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3526, 27, 28, 3lssvscl 19720 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3615, 22, 16, 23, 35syl22anc 837 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3711, 8lsmelvali 18767 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) ∧ ((𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇 ∧ (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3831, 32, 34, 36, 37syl22anc 837 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3930, 38eqeltrd 2890 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈))
40 oveq2 7143 . . . . . . . 8 (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) = (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)))
4140eleq1d 2874 . . . . . . 7 (𝑢 = (𝑑(+g𝑊)𝑒) → ((𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈) ↔ (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈)))
4239, 41syl5ibrcom 250 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4342rexlimdvva 3253 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4414, 43sylbid 243 . . . 4 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4544impr 458 . . 3 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (𝑇 𝑈))) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4645ralrimivva 3156 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4726, 28, 19, 27, 3islss4 19727 . . 3 (𝑊 ∈ LMod → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
48473ad2ant1 1130 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
4910, 46, 48mpbir2and 712 1 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Scalarcsca 16560   ·𝑠 cvsca 16561  SubGrpcsubg 18265  LSSumclsm 18751  Abelcabl 18899  LModclmod 19627  LSubSpclss 19696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-subg 18268  df-cntz 18439  df-lsm 18753  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-lmod 19629  df-lss 19697
This theorem is referenced by:  lsmelval2  19850  lsmsp  19851  lspprabs  19860  pj1lmhm  19865  lspabs3  19886  pjth  24043  lshpnelb  36280  lsmsat  36304  lsmcv2  36325  lcvat  36326  lcvexchlem4  36333  lcvexchlem5  36334  lcv1  36337  lsatexch  36339  lsatcv0eq  36343  lsatcvatlem  36345  lsatcvat2  36347  lsatcvat3  36348  lkrlsp  36398  dia2dimlem7  38366  dihjustlem  38512  dihord1  38514  dihlsscpre  38530  dihjatcclem2  38715  dihjat1lem  38724  dochexmidlem5  38760  dochexmidlem6  38761  dochexmidlem8  38763  lcfrlem23  38861  mapdlsmcl  38959  mapdlsm  38960  mapdpglem1  38968  mapdpglem2a  38970  mapdindp0  39015  mapdheq4lem  39027  mapdh6lem1N  39029  mapdh6lem2N  39030  hdmap1l6lem1  39103  hdmap1l6lem2  39104  hdmaprnlem3eN  39154  kercvrlsm  40027
  Copyright terms: Public domain W3C validator