MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcl Structured version   Visualization version   GIF version

Theorem lsmcl 19449
Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcl.s 𝑆 = (LSubSp‘𝑊)
lsmcl.p = (LSSum‘𝑊)
Assertion
Ref Expression
lsmcl ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)

Proof of Theorem lsmcl
Dummy variables 𝑎 𝑑 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodabl 19273 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
213ad2ant1 1167 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑊 ∈ Abel)
3 lsmcl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
43lsssubg 19323 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
543adant3 1166 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
63lsssubg 19323 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
763adant2 1165 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
8 lsmcl.p . . . 4 = (LSSum‘𝑊)
98lsmsubg2 18622 . . 3 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
102, 5, 7, 9syl3anc 1494 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
11 eqid 2825 . . . . . . . 8 (+g𝑊) = (+g𝑊)
1211, 8lsmelval 18422 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
135, 7, 12syl2anc 579 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
1413adantr 474 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
15 simpll1 1273 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑊 ∈ LMod)
16 simplr 785 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
17 simpll2 1275 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇𝑆)
18 simprl 787 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑𝑇)
19 eqid 2825 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2019, 3lssel 19301 . . . . . . . . . 10 ((𝑇𝑆𝑑𝑇) → 𝑑 ∈ (Base‘𝑊))
2117, 18, 20syl2anc 579 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑 ∈ (Base‘𝑊))
22 simpll3 1277 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈𝑆)
23 simprr 789 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒𝑈)
2419, 3lssel 19301 . . . . . . . . . 10 ((𝑈𝑆𝑒𝑈) → 𝑒 ∈ (Base‘𝑊))
2522, 23, 24syl2anc 579 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒 ∈ (Base‘𝑊))
26 eqid 2825 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
27 eqid 2825 . . . . . . . . . 10 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2825 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2919, 11, 26, 27, 28lmodvsdi 19249 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑 ∈ (Base‘𝑊) ∧ 𝑒 ∈ (Base‘𝑊))) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3015, 16, 21, 25, 29syl13anc 1495 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3115, 17, 4syl2anc 579 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
3215, 22, 6syl2anc 579 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
3326, 27, 28, 3lssvscl 19321 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑇𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑𝑇)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3415, 17, 16, 18, 33syl22anc 872 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3526, 27, 28, 3lssvscl 19321 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3615, 22, 16, 23, 35syl22anc 872 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3711, 8lsmelvali 18423 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) ∧ ((𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇 ∧ (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3831, 32, 34, 36, 37syl22anc 872 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3930, 38eqeltrd 2906 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈))
40 oveq2 6918 . . . . . . . 8 (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) = (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)))
4140eleq1d 2891 . . . . . . 7 (𝑢 = (𝑑(+g𝑊)𝑒) → ((𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈) ↔ (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈)))
4239, 41syl5ibrcom 239 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4342rexlimdvva 3248 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4414, 43sylbid 232 . . . 4 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4544impr 448 . . 3 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (𝑇 𝑈))) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4645ralrimivva 3180 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4726, 28, 19, 27, 3islss4 19328 . . 3 (𝑊 ∈ LMod → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
48473ad2ant1 1167 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
4910, 46, 48mpbir2and 704 1 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1111   = wceq 1656  wcel 2164  wral 3117  wrex 3118  cfv 6127  (class class class)co 6910  Basecbs 16229  +gcplusg 16312  Scalarcsca 16315   ·𝑠 cvsca 16316  SubGrpcsubg 17946  LSSumclsm 18407  Abelcabl 18554  LModclmod 19226  LSubSpclss 19295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-cnex 10315  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335  ax-pre-mulgt0 10336
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-om 7332  df-1st 7433  df-2nd 7434  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-xr 10402  df-ltxr 10403  df-le 10404  df-sub 10594  df-neg 10595  df-nn 11358  df-2 11421  df-ndx 16232  df-slot 16233  df-base 16235  df-sets 16236  df-ress 16237  df-plusg 16325  df-0g 16462  df-mgm 17602  df-sgrp 17644  df-mnd 17655  df-submnd 17696  df-grp 17786  df-minusg 17787  df-sbg 17788  df-subg 17949  df-cntz 18107  df-lsm 18409  df-cmn 18555  df-abl 18556  df-mgp 18851  df-ur 18863  df-ring 18910  df-lmod 19228  df-lss 19296
This theorem is referenced by:  lsmelval2  19451  lsmsp  19452  lspprabs  19461  pj1lmhm  19466  lspabs3  19487  pjth  23614  lshpnelb  35054  lsmsat  35078  lsmcv2  35099  lcvat  35100  lcvexchlem4  35107  lcvexchlem5  35108  lcv1  35111  lsatexch  35113  lsatcv0eq  35117  lsatcvatlem  35119  lsatcvat2  35121  lsatcvat3  35122  lkrlsp  35172  dia2dimlem7  37140  dihjustlem  37286  dihord1  37288  dihlsscpre  37304  dihjatcclem2  37489  dihjat1lem  37498  dochexmidlem5  37534  dochexmidlem6  37535  dochexmidlem8  37537  lcfrlem23  37635  mapdlsmcl  37733  mapdlsm  37734  mapdpglem1  37742  mapdpglem2a  37744  mapdindp0  37789  mapdheq4lem  37801  mapdh6lem1N  37803  mapdh6lem2N  37804  hdmap1l6lem1  37877  hdmap1l6lem2  37878  hdmaprnlem3eN  37928  kercvrlsm  38491
  Copyright terms: Public domain W3C validator