MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmcl Structured version   Visualization version   GIF version

Theorem lsmcl 19846
Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
lsmcl.s 𝑆 = (LSubSp‘𝑊)
lsmcl.p = (LSSum‘𝑊)
Assertion
Ref Expression
lsmcl ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)

Proof of Theorem lsmcl
Dummy variables 𝑎 𝑑 𝑒 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmodabl 19672 . . . 4 (𝑊 ∈ LMod → 𝑊 ∈ Abel)
213ad2ant1 1130 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑊 ∈ Abel)
3 lsmcl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
43lsssubg 19720 . . . 4 ((𝑊 ∈ LMod ∧ 𝑇𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
543adant3 1129 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ∈ (SubGrp‘𝑊))
63lsssubg 19720 . . . 4 ((𝑊 ∈ LMod ∧ 𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
763adant2 1128 . . 3 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ∈ (SubGrp‘𝑊))
8 lsmcl.p . . . 4 = (LSSum‘𝑊)
98lsmsubg2 18970 . . 3 ((𝑊 ∈ Abel ∧ 𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
102, 5, 7, 9syl3anc 1368 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ (SubGrp‘𝑊))
11 eqid 2822 . . . . . . . 8 (+g𝑊) = (+g𝑊)
1211, 8lsmelval 18765 . . . . . . 7 ((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
135, 7, 12syl2anc 587 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
1413adantr 484 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) ↔ ∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒)))
15 simpll1 1209 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑊 ∈ LMod)
16 simplr 768 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑎 ∈ (Base‘(Scalar‘𝑊)))
17 simpll2 1210 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇𝑆)
18 simprl 770 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑𝑇)
19 eqid 2822 . . . . . . . . . . 11 (Base‘𝑊) = (Base‘𝑊)
2019, 3lssel 19700 . . . . . . . . . 10 ((𝑇𝑆𝑑𝑇) → 𝑑 ∈ (Base‘𝑊))
2117, 18, 20syl2anc 587 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑑 ∈ (Base‘𝑊))
22 simpll3 1211 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈𝑆)
23 simprr 772 . . . . . . . . . 10 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒𝑈)
2419, 3lssel 19700 . . . . . . . . . 10 ((𝑈𝑆𝑒𝑈) → 𝑒 ∈ (Base‘𝑊))
2522, 23, 24syl2anc 587 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑒 ∈ (Base‘𝑊))
26 eqid 2822 . . . . . . . . . 10 (Scalar‘𝑊) = (Scalar‘𝑊)
27 eqid 2822 . . . . . . . . . 10 ( ·𝑠𝑊) = ( ·𝑠𝑊)
28 eqid 2822 . . . . . . . . . 10 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
2919, 11, 26, 27, 28lmodvsdi 19648 . . . . . . . . 9 ((𝑊 ∈ LMod ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑 ∈ (Base‘𝑊) ∧ 𝑒 ∈ (Base‘𝑊))) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3015, 16, 21, 25, 29syl13anc 1369 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) = ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)))
3115, 17, 4syl2anc 587 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑇 ∈ (SubGrp‘𝑊))
3215, 22, 6syl2anc 587 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → 𝑈 ∈ (SubGrp‘𝑊))
3326, 27, 28, 3lssvscl 19718 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑇𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑑𝑇)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3415, 17, 16, 18, 33syl22anc 837 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇)
3526, 27, 28, 3lssvscl 19718 . . . . . . . . . 10 (((𝑊 ∈ LMod ∧ 𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3615, 22, 16, 23, 35syl22anc 837 . . . . . . . . 9 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)
3711, 8lsmelvali 18766 . . . . . . . . 9 (((𝑇 ∈ (SubGrp‘𝑊) ∧ 𝑈 ∈ (SubGrp‘𝑊)) ∧ ((𝑎( ·𝑠𝑊)𝑑) ∈ 𝑇 ∧ (𝑎( ·𝑠𝑊)𝑒) ∈ 𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3831, 32, 34, 36, 37syl22anc 837 . . . . . . . 8 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → ((𝑎( ·𝑠𝑊)𝑑)(+g𝑊)(𝑎( ·𝑠𝑊)𝑒)) ∈ (𝑇 𝑈))
3930, 38eqeltrd 2914 . . . . . . 7 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈))
40 oveq2 7148 . . . . . . . 8 (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) = (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)))
4140eleq1d 2898 . . . . . . 7 (𝑢 = (𝑑(+g𝑊)𝑒) → ((𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈) ↔ (𝑎( ·𝑠𝑊)(𝑑(+g𝑊)𝑒)) ∈ (𝑇 𝑈)))
4239, 41syl5ibrcom 250 . . . . . 6 ((((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) ∧ (𝑑𝑇𝑒𝑈)) → (𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4342rexlimdvva 3280 . . . . 5 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (∃𝑑𝑇𝑒𝑈 𝑢 = (𝑑(+g𝑊)𝑒) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4414, 43sylbid 243 . . . 4 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑎 ∈ (Base‘(Scalar‘𝑊))) → (𝑢 ∈ (𝑇 𝑈) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈)))
4544impr 458 . . 3 (((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) ∧ (𝑎 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑢 ∈ (𝑇 𝑈))) → (𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4645ralrimivva 3181 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))
4726, 28, 19, 27, 3islss4 19725 . . 3 (𝑊 ∈ LMod → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
48473ad2ant1 1130 . 2 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → ((𝑇 𝑈) ∈ 𝑆 ↔ ((𝑇 𝑈) ∈ (SubGrp‘𝑊) ∧ ∀𝑎 ∈ (Base‘(Scalar‘𝑊))∀𝑢 ∈ (𝑇 𝑈)(𝑎( ·𝑠𝑊)𝑢) ∈ (𝑇 𝑈))))
4910, 46, 48mpbir2and 712 1 ((𝑊 ∈ LMod ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2114  wral 3130  wrex 3131  cfv 6334  (class class class)co 7140  Basecbs 16474  +gcplusg 16556  Scalarcsca 16559   ·𝑠 cvsca 16560  SubGrpcsubg 18264  LSSumclsm 18750  Abelcabl 18898  LModclmod 19625  LSubSpclss 19694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-ndx 16477  df-slot 16478  df-base 16480  df-sets 16481  df-ress 16482  df-plusg 16569  df-0g 16706  df-mgm 17843  df-sgrp 17892  df-mnd 17903  df-submnd 17948  df-grp 18097  df-minusg 18098  df-sbg 18099  df-subg 18267  df-cntz 18438  df-lsm 18752  df-cmn 18899  df-abl 18900  df-mgp 19231  df-ur 19243  df-ring 19290  df-lmod 19627  df-lss 19695
This theorem is referenced by:  lsmelval2  19848  lsmsp  19849  lspprabs  19858  pj1lmhm  19863  lspabs3  19884  pjth  24041  lshpnelb  36238  lsmsat  36262  lsmcv2  36283  lcvat  36284  lcvexchlem4  36291  lcvexchlem5  36292  lcv1  36295  lsatexch  36297  lsatcv0eq  36301  lsatcvatlem  36303  lsatcvat2  36305  lsatcvat3  36306  lkrlsp  36356  dia2dimlem7  38324  dihjustlem  38470  dihord1  38472  dihlsscpre  38488  dihjatcclem2  38673  dihjat1lem  38682  dochexmidlem5  38718  dochexmidlem6  38719  dochexmidlem8  38721  lcfrlem23  38819  mapdlsmcl  38917  mapdlsm  38918  mapdpglem1  38926  mapdpglem2a  38928  mapdindp0  38973  mapdheq4lem  38985  mapdh6lem1N  38987  mapdh6lem2N  38988  hdmap1l6lem1  39061  hdmap1l6lem2  39062  hdmaprnlem3eN  39112  kercvrlsm  39957
  Copyright terms: Public domain W3C validator