MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodscaf Structured version   Visualization version   GIF version

Theorem lmodscaf 20826
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
Assertion
Ref Expression
lmodscaf (𝑊 ∈ LMod → :(𝐾 × 𝐵)⟶𝐵)

Proof of Theorem lmodscaf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . . 5 𝐵 = (Base‘𝑊)
2 scaffval.f . . . . 5 𝐹 = (Scalar‘𝑊)
3 eqid 2733 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 scaffval.k . . . . 5 𝐾 = (Base‘𝐹)
51, 2, 3, 4lmodvscl 20820 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐵) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
653expb 1120 . . 3 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐵)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
76ralrimivva 3176 . 2 (𝑊 ∈ LMod → ∀𝑥𝐾𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
8 scaffval.a . . . 4 = ( ·sf𝑊)
91, 2, 4, 8, 3scaffval 20822 . . 3 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦))
109fmpo 8009 . 2 (∀𝑥𝐾𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵 :(𝐾 × 𝐵)⟶𝐵)
117, 10sylib 218 1 (𝑊 ∈ LMod → :(𝐾 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wral 3048   × cxp 5619  wf 6485  cfv 6489  (class class class)co 7355  Basecbs 17127  Scalarcsca 17171   ·𝑠 cvsca 17172  LModclmod 20802   ·sf cscaf 20803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-lmod 20804  df-scaf 20805
This theorem is referenced by:  lmodfopnelem1  20840  nlmvscn  24622  cvsi  25077
  Copyright terms: Public domain W3C validator