![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodscaf | Structured version Visualization version GIF version |
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.) |
Ref | Expression |
---|---|
scaffval.b | β’ π΅ = (Baseβπ) |
scaffval.f | β’ πΉ = (Scalarβπ) |
scaffval.k | β’ πΎ = (BaseβπΉ) |
scaffval.a | β’ β = ( Β·sf βπ) |
Ref | Expression |
---|---|
lmodscaf | β’ (π β LMod β β :(πΎ Γ π΅)βΆπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scaffval.b | . . . . 5 β’ π΅ = (Baseβπ) | |
2 | scaffval.f | . . . . 5 β’ πΉ = (Scalarβπ) | |
3 | eqid 2732 | . . . . 5 β’ ( Β·π βπ) = ( Β·π βπ) | |
4 | scaffval.k | . . . . 5 β’ πΎ = (BaseβπΉ) | |
5 | 1, 2, 3, 4 | lmodvscl 20632 | . . . 4 β’ ((π β LMod β§ π₯ β πΎ β§ π¦ β π΅) β (π₯( Β·π βπ)π¦) β π΅) |
6 | 5 | 3expb 1120 | . . 3 β’ ((π β LMod β§ (π₯ β πΎ β§ π¦ β π΅)) β (π₯( Β·π βπ)π¦) β π΅) |
7 | 6 | ralrimivva 3200 | . 2 β’ (π β LMod β βπ₯ β πΎ βπ¦ β π΅ (π₯( Β·π βπ)π¦) β π΅) |
8 | scaffval.a | . . . 4 β’ β = ( Β·sf βπ) | |
9 | 1, 2, 4, 8, 3 | scaffval 20634 | . . 3 β’ β = (π₯ β πΎ, π¦ β π΅ β¦ (π₯( Β·π βπ)π¦)) |
10 | 9 | fmpo 8056 | . 2 β’ (βπ₯ β πΎ βπ¦ β π΅ (π₯( Β·π βπ)π¦) β π΅ β β :(πΎ Γ π΅)βΆπ΅) |
11 | 7, 10 | sylib 217 | 1 β’ (π β LMod β β :(πΎ Γ π΅)βΆπ΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βwral 3061 Γ cxp 5674 βΆwf 6539 βcfv 6543 (class class class)co 7411 Basecbs 17148 Scalarcsca 17204 Β·π cvsca 17205 LModclmod 20614 Β·sf cscaf 20615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-lmod 20616 df-scaf 20617 |
This theorem is referenced by: lmodfopnelem1 20652 nlmvscn 24424 cvsi 24870 |
Copyright terms: Public domain | W3C validator |