MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodscaf Structured version   Visualization version   GIF version

Theorem lmodscaf 20638
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐡 = (Baseβ€˜π‘Š)
scaffval.f 𝐹 = (Scalarβ€˜π‘Š)
scaffval.k 𝐾 = (Baseβ€˜πΉ)
scaffval.a βˆ™ = ( Β·sf β€˜π‘Š)
Assertion
Ref Expression
lmodscaf (π‘Š ∈ LMod β†’ βˆ™ :(𝐾 Γ— 𝐡)⟢𝐡)

Proof of Theorem lmodscaf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . . 5 𝐡 = (Baseβ€˜π‘Š)
2 scaffval.f . . . . 5 𝐹 = (Scalarβ€˜π‘Š)
3 eqid 2732 . . . . 5 ( ·𝑠 β€˜π‘Š) = ( ·𝑠 β€˜π‘Š)
4 scaffval.k . . . . 5 𝐾 = (Baseβ€˜πΉ)
51, 2, 3, 4lmodvscl 20632 . . . 4 ((π‘Š ∈ LMod ∧ π‘₯ ∈ 𝐾 ∧ 𝑦 ∈ 𝐡) β†’ (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝐡)
653expb 1120 . . 3 ((π‘Š ∈ LMod ∧ (π‘₯ ∈ 𝐾 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝐡)
76ralrimivva 3200 . 2 (π‘Š ∈ LMod β†’ βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐡 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝐡)
8 scaffval.a . . . 4 βˆ™ = ( Β·sf β€˜π‘Š)
91, 2, 4, 8, 3scaffval 20634 . . 3 βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯( ·𝑠 β€˜π‘Š)𝑦))
109fmpo 8056 . 2 (βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐡 (π‘₯( ·𝑠 β€˜π‘Š)𝑦) ∈ 𝐡 ↔ βˆ™ :(𝐾 Γ— 𝐡)⟢𝐡)
117, 10sylib 217 1 (π‘Š ∈ LMod β†’ βˆ™ :(𝐾 Γ— 𝐡)⟢𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   Γ— cxp 5674  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  Scalarcsca 17204   ·𝑠 cvsca 17205  LModclmod 20614   Β·sf cscaf 20615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-lmod 20616  df-scaf 20617
This theorem is referenced by:  lmodfopnelem1  20652  nlmvscn  24424  cvsi  24870
  Copyright terms: Public domain W3C validator