MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodscaf Structured version   Visualization version   GIF version

Theorem lmodscaf 20812
Description: The scalar multiplication operation is a function. (Contributed by Mario Carneiro, 5-Oct-2015.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
Assertion
Ref Expression
lmodscaf (𝑊 ∈ LMod → :(𝐾 × 𝐵)⟶𝐵)

Proof of Theorem lmodscaf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scaffval.b . . . . 5 𝐵 = (Base‘𝑊)
2 scaffval.f . . . . 5 𝐹 = (Scalar‘𝑊)
3 eqid 2731 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
4 scaffval.k . . . . 5 𝐾 = (Base‘𝐹)
51, 2, 3, 4lmodvscl 20806 . . . 4 ((𝑊 ∈ LMod ∧ 𝑥𝐾𝑦𝐵) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
653expb 1120 . . 3 ((𝑊 ∈ LMod ∧ (𝑥𝐾𝑦𝐵)) → (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
76ralrimivva 3175 . 2 (𝑊 ∈ LMod → ∀𝑥𝐾𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵)
8 scaffval.a . . . 4 = ( ·sf𝑊)
91, 2, 4, 8, 3scaffval 20808 . . 3 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥( ·𝑠𝑊)𝑦))
109fmpo 7995 . 2 (∀𝑥𝐾𝑦𝐵 (𝑥( ·𝑠𝑊)𝑦) ∈ 𝐵 :(𝐾 × 𝐵)⟶𝐵)
117, 10sylib 218 1 (𝑊 ∈ LMod → :(𝐾 × 𝐵)⟶𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wral 3047   × cxp 5609  wf 6472  cfv 6476  (class class class)co 7341  Basecbs 17115  Scalarcsca 17159   ·𝑠 cvsca 17160  LModclmod 20788   ·sf cscaf 20789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-lmod 20790  df-scaf 20791
This theorem is referenced by:  lmodfopnelem1  20826  nlmvscn  24597  cvsi  25052
  Copyright terms: Public domain W3C validator