MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmplusg Structured version   Visualization version   GIF version

Theorem lmhmplusg 19745
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
lmhmplusg.p + = (+g𝑁)
Assertion
Ref Expression
lmhmplusg ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem lmhmplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2818 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2818 . 2 ( ·𝑠𝑁) = ( ·𝑠𝑁)
4 eqid 2818 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 eqid 2818 . 2 (Scalar‘𝑁) = (Scalar‘𝑁)
6 eqid 2818 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 19734 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
87adantr 481 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 19733 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑁 ∈ LMod)
109adantr 481 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ LMod)
114, 5lmhmsca 19731 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → (Scalar‘𝑁) = (Scalar‘𝑀))
1211adantr 481 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (Scalar‘𝑁) = (Scalar‘𝑀))
13 lmodabl 19610 . . . 4 (𝑁 ∈ LMod → 𝑁 ∈ Abel)
1410, 13syl 17 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ Abel)
15 lmghm 19732 . . . 4 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
1615adantr 481 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
17 lmghm 19732 . . . 4 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺 ∈ (𝑀 GrpHom 𝑁))
1817adantl 482 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺 ∈ (𝑀 GrpHom 𝑁))
19 lmhmplusg.p . . . 4 + = (+g𝑁)
2019ghmplusg 18895 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 GrpHom 𝑁))
2114, 16, 18, 20syl3anc 1363 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 GrpHom 𝑁))
22 simpll 763 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 ∈ (𝑀 LMHom 𝑁))
23 simprl 767 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
24 simprr 769 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
254, 6, 1, 2, 3lmhmlin 19736 . . . . . 6 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐹𝑦)))
2622, 23, 24, 25syl3anc 1363 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐹𝑦)))
27 simplr 765 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 ∈ (𝑀 LMHom 𝑁))
284, 6, 1, 2, 3lmhmlin 19736 . . . . . 6 ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2927, 23, 24, 28syl3anc 1363 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
3026, 29oveq12d 7163 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥( ·𝑠𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = ((𝑥( ·𝑠𝑁)(𝐹𝑦)) + (𝑥( ·𝑠𝑁)(𝐺𝑦))))
319ad2antrr 722 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ LMod)
3211fveq2d 6667 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
3332ad2antrr 722 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
3423, 33eleqtrrd 2913 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑁)))
35 eqid 2818 . . . . . . . 8 (Base‘𝑁) = (Base‘𝑁)
361, 35lmhmf 19735 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
3736ad2antrr 722 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
3837, 24ffvelrnd 6844 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹𝑦) ∈ (Base‘𝑁))
391, 35lmhmf 19735 . . . . . . 7 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
4039ad2antlr 723 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
4140, 24ffvelrnd 6844 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
42 eqid 2818 . . . . . 6 (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑁))
4335, 19, 5, 3, 42lmodvsdi 19586 . . . . 5 ((𝑁 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑁)) ∧ (𝐹𝑦) ∈ (Base‘𝑁) ∧ (𝐺𝑦) ∈ (Base‘𝑁))) → (𝑥( ·𝑠𝑁)((𝐹𝑦) + (𝐺𝑦))) = ((𝑥( ·𝑠𝑁)(𝐹𝑦)) + (𝑥( ·𝑠𝑁)(𝐺𝑦))))
4431, 34, 38, 41, 43syl13anc 1364 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑁)((𝐹𝑦) + (𝐺𝑦))) = ((𝑥( ·𝑠𝑁)(𝐹𝑦)) + (𝑥( ·𝑠𝑁)(𝐺𝑦))))
4530, 44eqtr4d 2856 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥( ·𝑠𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝑥( ·𝑠𝑁)((𝐹𝑦) + (𝐺𝑦))))
4637ffnd 6508 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀))
4740ffnd 6508 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀))
48 fvexd 6678 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V)
497ad2antrr 722 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑀 ∈ LMod)
501, 4, 2, 6lmodvscl 19580 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
5149, 23, 24, 50syl3anc 1363 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
52 fnfvof 7412 . . . 4 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = ((𝐹‘(𝑥( ·𝑠𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
5346, 47, 48, 51, 52syl22anc 834 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = ((𝐹‘(𝑥( ·𝑠𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
54 fnfvof 7412 . . . . 5 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5546, 47, 48, 24, 54syl22anc 834 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5655oveq2d 7161 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑁)((𝐹f + 𝐺)‘𝑦)) = (𝑥( ·𝑠𝑁)((𝐹𝑦) + (𝐺𝑦))))
5745, 53, 563eqtr4d 2863 . 2 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)((𝐹f + 𝐺)‘𝑦)))
581, 2, 3, 4, 5, 6, 8, 10, 12, 21, 57islmhmd 19740 1 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492   Fn wfn 6343  wf 6344  cfv 6348  (class class class)co 7145  f cof 7396  Basecbs 16471  +gcplusg 16553  Scalarcsca 16556   ·𝑠 cvsca 16557   GrpHom cghm 18293  Abelcabl 18836  LModclmod 19563   LMHom clmhm 19720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-plusg 16566  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-ghm 18294  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-lmod 19565  df-lmhm 19723
This theorem is referenced by:  nmhmplusg  23293  mendring  39670
  Copyright terms: Public domain W3C validator