Step | Hyp | Ref
| Expression |
1 | | eqid 2759 |
. 2
⊢
(Base‘𝑀) =
(Base‘𝑀) |
2 | | eqid 2759 |
. 2
⊢ (
·𝑠 ‘𝑀) = ( ·𝑠
‘𝑀) |
3 | | eqid 2759 |
. 2
⊢ (
·𝑠 ‘𝑁) = ( ·𝑠
‘𝑁) |
4 | | eqid 2759 |
. 2
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
5 | | eqid 2759 |
. 2
⊢
(Scalar‘𝑁) =
(Scalar‘𝑁) |
6 | | eqid 2759 |
. 2
⊢
(Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀)) |
7 | | lmhmlmod1 19858 |
. . 3
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod) |
8 | 7 | adantr 485 |
. 2
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod) |
9 | | lmhmlmod2 19857 |
. . 3
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑁 ∈ LMod) |
10 | 9 | adantr 485 |
. 2
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ LMod) |
11 | 4, 5 | lmhmsca 19855 |
. . 3
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → (Scalar‘𝑁) = (Scalar‘𝑀)) |
12 | 11 | adantr 485 |
. 2
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (Scalar‘𝑁) = (Scalar‘𝑀)) |
13 | | lmodabl 19734 |
. . . 4
⊢ (𝑁 ∈ LMod → 𝑁 ∈ Abel) |
14 | 10, 13 | syl 17 |
. . 3
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ Abel) |
15 | | lmghm 19856 |
. . . 4
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
16 | 15 | adantr 485 |
. . 3
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐹 ∈ (𝑀 GrpHom 𝑁)) |
17 | | lmghm 19856 |
. . . 4
⊢ (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺 ∈ (𝑀 GrpHom 𝑁)) |
18 | 17 | adantl 486 |
. . 3
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺 ∈ (𝑀 GrpHom 𝑁)) |
19 | | lmhmplusg.p |
. . . 4
⊢ + =
(+g‘𝑁) |
20 | 19 | ghmplusg 19019 |
. . 3
⊢ ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁)) |
21 | 14, 16, 18, 20 | syl3anc 1369 |
. 2
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁)) |
22 | | simpll 767 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 ∈ (𝑀 LMHom 𝑁)) |
23 | | simprl 771 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑀))) |
24 | | simprr 773 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀)) |
25 | 4, 6, 1, 2, 3 | lmhmlin 19860 |
. . . . . 6
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥( ·𝑠
‘𝑁)(𝐹‘𝑦))) |
26 | 22, 23, 24, 25 | syl3anc 1369 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥( ·𝑠
‘𝑁)(𝐹‘𝑦))) |
27 | | simplr 769 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 ∈ (𝑀 LMHom 𝑁)) |
28 | 4, 6, 1, 2, 3 | lmhmlin 19860 |
. . . . . 6
⊢ ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦))) |
29 | 27, 23, 24, 28 | syl3anc 1369 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦))) |
30 | 26, 29 | oveq12d 7161 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦))) = ((𝑥( ·𝑠
‘𝑁)(𝐹‘𝑦)) + (𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦)))) |
31 | 9 | ad2antrr 726 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ LMod) |
32 | 11 | fveq2d 6655 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → (Base‘(Scalar‘𝑁)) =
(Base‘(Scalar‘𝑀))) |
33 | 32 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘(Scalar‘𝑁)) =
(Base‘(Scalar‘𝑀))) |
34 | 23, 33 | eleqtrrd 2854 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑁))) |
35 | | eqid 2759 |
. . . . . . . 8
⊢
(Base‘𝑁) =
(Base‘𝑁) |
36 | 1, 35 | lmhmf 19859 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
37 | 36 | ad2antrr 726 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁)) |
38 | 37, 24 | ffvelrnd 6836 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘𝑦) ∈ (Base‘𝑁)) |
39 | 1, 35 | lmhmf 19859 |
. . . . . . 7
⊢ (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) |
40 | 39 | ad2antlr 727 |
. . . . . 6
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁)) |
41 | 40, 24 | ffvelrnd 6836 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘𝑦) ∈ (Base‘𝑁)) |
42 | | eqid 2759 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑁)) |
43 | 35, 19, 5, 3, 42 | lmodvsdi 19710 |
. . . . 5
⊢ ((𝑁 ∈ LMod ∧ (𝑥 ∈
(Base‘(Scalar‘𝑁)) ∧ (𝐹‘𝑦) ∈ (Base‘𝑁) ∧ (𝐺‘𝑦) ∈ (Base‘𝑁))) → (𝑥( ·𝑠
‘𝑁)((𝐹‘𝑦) + (𝐺‘𝑦))) = ((𝑥( ·𝑠
‘𝑁)(𝐹‘𝑦)) + (𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦)))) |
44 | 31, 34, 38, 41, 43 | syl13anc 1370 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠
‘𝑁)((𝐹‘𝑦) + (𝐺‘𝑦))) = ((𝑥( ·𝑠
‘𝑁)(𝐹‘𝑦)) + (𝑥( ·𝑠
‘𝑁)(𝐺‘𝑦)))) |
45 | 30, 44 | eqtr4d 2797 |
. . 3
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦))) = (𝑥( ·𝑠
‘𝑁)((𝐹‘𝑦) + (𝐺‘𝑦)))) |
46 | 37 | ffnd 6492 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀)) |
47 | 40 | ffnd 6492 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀)) |
48 | | fvexd 6666 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V) |
49 | 7 | ad2antrr 726 |
. . . . 5
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑀 ∈ LMod) |
50 | 1, 4, 2, 6 | lmodvscl 19704 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈
(Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠
‘𝑀)𝑦) ∈ (Base‘𝑀)) |
51 | 49, 23, 24, 50 | syl3anc 1369 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠
‘𝑀)𝑦) ∈ (Base‘𝑀)) |
52 | | fnfvof 7414 |
. . . 4
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥( ·𝑠
‘𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = ((𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦)))) |
53 | 46, 47, 48, 51, 52 | syl22anc 838 |
. . 3
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = ((𝐹‘(𝑥( ·𝑠
‘𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠
‘𝑀)𝑦)))) |
54 | | fnfvof 7414 |
. . . . 5
⊢ (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑦) = ((𝐹‘𝑦) + (𝐺‘𝑦))) |
55 | 46, 47, 48, 24, 54 | syl22anc 838 |
. . . 4
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘𝑦) = ((𝐹‘𝑦) + (𝐺‘𝑦))) |
56 | 55 | oveq2d 7159 |
. . 3
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠
‘𝑁)((𝐹 ∘f + 𝐺)‘𝑦)) = (𝑥( ·𝑠
‘𝑁)((𝐹‘𝑦) + (𝐺‘𝑦)))) |
57 | 45, 53, 56 | 3eqtr4d 2804 |
. 2
⊢ (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹 ∘f + 𝐺)‘(𝑥( ·𝑠
‘𝑀)𝑦)) = (𝑥( ·𝑠
‘𝑁)((𝐹 ∘f + 𝐺)‘𝑦))) |
58 | 1, 2, 3, 4, 5, 6, 8, 10, 12, 21, 57 | islmhmd 19864 |
1
⊢ ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹 ∘f + 𝐺) ∈ (𝑀 LMHom 𝑁)) |