MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmplusg Structured version   Visualization version   GIF version

Theorem lmhmplusg 20221
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
lmhmplusg.p + = (+g𝑁)
Assertion
Ref Expression
lmhmplusg ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem lmhmplusg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝑀) = (Base‘𝑀)
2 eqid 2738 . 2 ( ·𝑠𝑀) = ( ·𝑠𝑀)
3 eqid 2738 . 2 ( ·𝑠𝑁) = ( ·𝑠𝑁)
4 eqid 2738 . 2 (Scalar‘𝑀) = (Scalar‘𝑀)
5 eqid 2738 . 2 (Scalar‘𝑁) = (Scalar‘𝑁)
6 eqid 2738 . 2 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
7 lmhmlmod1 20210 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑀 ∈ LMod)
87adantr 480 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑀 ∈ LMod)
9 lmhmlmod2 20209 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝑁 ∈ LMod)
109adantr 480 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ LMod)
114, 5lmhmsca 20207 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) → (Scalar‘𝑁) = (Scalar‘𝑀))
1211adantr 480 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (Scalar‘𝑁) = (Scalar‘𝑀))
13 lmodabl 20085 . . . 4 (𝑁 ∈ LMod → 𝑁 ∈ Abel)
1410, 13syl 17 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝑁 ∈ Abel)
15 lmghm 20208 . . . 4 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
1615adantr 480 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐹 ∈ (𝑀 GrpHom 𝑁))
17 lmghm 20208 . . . 4 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺 ∈ (𝑀 GrpHom 𝑁))
1817adantl 481 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → 𝐺 ∈ (𝑀 GrpHom 𝑁))
19 lmhmplusg.p . . . 4 + = (+g𝑁)
2019ghmplusg 19362 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 GrpHom 𝑁))
2114, 16, 18, 20syl3anc 1369 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 GrpHom 𝑁))
22 simpll 763 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 ∈ (𝑀 LMHom 𝑁))
23 simprl 767 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑀)))
24 simprr 769 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑦 ∈ (Base‘𝑀))
254, 6, 1, 2, 3lmhmlin 20212 . . . . . 6 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐹𝑦)))
2622, 23, 24, 25syl3anc 1369 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐹𝑦)))
27 simplr 765 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 ∈ (𝑀 LMHom 𝑁))
284, 6, 1, 2, 3lmhmlin 20212 . . . . . 6 ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
2927, 23, 24, 28syl3anc 1369 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)(𝐺𝑦)))
3026, 29oveq12d 7273 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥( ·𝑠𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = ((𝑥( ·𝑠𝑁)(𝐹𝑦)) + (𝑥( ·𝑠𝑁)(𝐺𝑦))))
319ad2antrr 722 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑁 ∈ LMod)
3211fveq2d 6760 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
3332ad2antrr 722 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑀)))
3423, 33eleqtrrd 2842 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑥 ∈ (Base‘(Scalar‘𝑁)))
35 eqid 2738 . . . . . . . 8 (Base‘𝑁) = (Base‘𝑁)
361, 35lmhmf 20211 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
3736ad2antrr 722 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹:(Base‘𝑀)⟶(Base‘𝑁))
3837, 24ffvelrnd 6944 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐹𝑦) ∈ (Base‘𝑁))
391, 35lmhmf 20211 . . . . . . 7 (𝐺 ∈ (𝑀 LMHom 𝑁) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
4039ad2antlr 723 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺:(Base‘𝑀)⟶(Base‘𝑁))
4140, 24ffvelrnd 6944 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝐺𝑦) ∈ (Base‘𝑁))
42 eqid 2738 . . . . . 6 (Base‘(Scalar‘𝑁)) = (Base‘(Scalar‘𝑁))
4335, 19, 5, 3, 42lmodvsdi 20061 . . . . 5 ((𝑁 ∈ LMod ∧ (𝑥 ∈ (Base‘(Scalar‘𝑁)) ∧ (𝐹𝑦) ∈ (Base‘𝑁) ∧ (𝐺𝑦) ∈ (Base‘𝑁))) → (𝑥( ·𝑠𝑁)((𝐹𝑦) + (𝐺𝑦))) = ((𝑥( ·𝑠𝑁)(𝐹𝑦)) + (𝑥( ·𝑠𝑁)(𝐺𝑦))))
4431, 34, 38, 41, 43syl13anc 1370 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑁)((𝐹𝑦) + (𝐺𝑦))) = ((𝑥( ·𝑠𝑁)(𝐹𝑦)) + (𝑥( ·𝑠𝑁)(𝐺𝑦))))
4530, 44eqtr4d 2781 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹‘(𝑥( ·𝑠𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠𝑀)𝑦))) = (𝑥( ·𝑠𝑁)((𝐹𝑦) + (𝐺𝑦))))
4637ffnd 6585 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐹 Fn (Base‘𝑀))
4740ffnd 6585 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝐺 Fn (Base‘𝑀))
48 fvexd 6771 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (Base‘𝑀) ∈ V)
497ad2antrr 722 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → 𝑀 ∈ LMod)
501, 4, 2, 6lmodvscl 20055 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀)) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
5149, 23, 24, 50syl3anc 1369 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))
52 fnfvof 7528 . . . 4 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ (𝑥( ·𝑠𝑀)𝑦) ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = ((𝐹‘(𝑥( ·𝑠𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
5346, 47, 48, 51, 52syl22anc 835 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = ((𝐹‘(𝑥( ·𝑠𝑀)𝑦)) + (𝐺‘(𝑥( ·𝑠𝑀)𝑦))))
54 fnfvof 7528 . . . . 5 (((𝐹 Fn (Base‘𝑀) ∧ 𝐺 Fn (Base‘𝑀)) ∧ ((Base‘𝑀) ∈ V ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5546, 47, 48, 24, 54syl22anc 835 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘𝑦) = ((𝐹𝑦) + (𝐺𝑦)))
5655oveq2d 7271 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → (𝑥( ·𝑠𝑁)((𝐹f + 𝐺)‘𝑦)) = (𝑥( ·𝑠𝑁)((𝐹𝑦) + (𝐺𝑦))))
5745, 53, 563eqtr4d 2788 . 2 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (𝑥 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑦 ∈ (Base‘𝑀))) → ((𝐹f + 𝐺)‘(𝑥( ·𝑠𝑀)𝑦)) = (𝑥( ·𝑠𝑁)((𝐹f + 𝐺)‘𝑦)))
581, 2, 3, 4, 5, 6, 8, 10, 12, 21, 57islmhmd 20216 1 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) → (𝐹f + 𝐺) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  Basecbs 16840  +gcplusg 16888  Scalarcsca 16891   ·𝑠 cvsca 16892   GrpHom cghm 18746  Abelcabl 19302  LModclmod 20038   LMHom clmhm 20196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-lmod 20040  df-lmhm 20199
This theorem is referenced by:  nmhmplusg  23827  mendring  40933
  Copyright terms: Public domain W3C validator