MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmhmplusg Structured version   Visualization version   GIF version

Theorem lmhmplusg 20520
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
lmhmplusg.p + = (+gβ€˜π‘)
Assertion
Ref Expression
lmhmplusg ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ (𝐹 ∘f + 𝐺) ∈ (𝑀 LMHom 𝑁))

Proof of Theorem lmhmplusg
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . 2 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
2 eqid 2733 . 2 ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘€)
3 eqid 2733 . 2 ( ·𝑠 β€˜π‘) = ( ·𝑠 β€˜π‘)
4 eqid 2733 . 2 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
5 eqid 2733 . 2 (Scalarβ€˜π‘) = (Scalarβ€˜π‘)
6 eqid 2733 . 2 (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜(Scalarβ€˜π‘€))
7 lmhmlmod1 20509 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) β†’ 𝑀 ∈ LMod)
87adantr 482 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ 𝑀 ∈ LMod)
9 lmhmlmod2 20508 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) β†’ 𝑁 ∈ LMod)
109adantr 482 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ 𝑁 ∈ LMod)
114, 5lmhmsca 20506 . . 3 (𝐹 ∈ (𝑀 LMHom 𝑁) β†’ (Scalarβ€˜π‘) = (Scalarβ€˜π‘€))
1211adantr 482 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ (Scalarβ€˜π‘) = (Scalarβ€˜π‘€))
13 lmodabl 20384 . . . 4 (𝑁 ∈ LMod β†’ 𝑁 ∈ Abel)
1410, 13syl 17 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ 𝑁 ∈ Abel)
15 lmghm 20507 . . . 4 (𝐹 ∈ (𝑀 LMHom 𝑁) β†’ 𝐹 ∈ (𝑀 GrpHom 𝑁))
1615adantr 482 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ 𝐹 ∈ (𝑀 GrpHom 𝑁))
17 lmghm 20507 . . . 4 (𝐺 ∈ (𝑀 LMHom 𝑁) β†’ 𝐺 ∈ (𝑀 GrpHom 𝑁))
1817adantl 483 . . 3 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ 𝐺 ∈ (𝑀 GrpHom 𝑁))
19 lmhmplusg.p . . . 4 + = (+gβ€˜π‘)
2019ghmplusg 19629 . . 3 ((𝑁 ∈ Abel ∧ 𝐹 ∈ (𝑀 GrpHom 𝑁) ∧ 𝐺 ∈ (𝑀 GrpHom 𝑁)) β†’ (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁))
2114, 16, 18, 20syl3anc 1372 . 2 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ (𝐹 ∘f + 𝐺) ∈ (𝑀 GrpHom 𝑁))
22 simpll 766 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝐹 ∈ (𝑀 LMHom 𝑁))
23 simprl 770 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)))
24 simprr 772 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝑦 ∈ (Baseβ€˜π‘€))
254, 6, 1, 2, 3lmhmlin 20511 . . . . . 6 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) β†’ (πΉβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯( ·𝑠 β€˜π‘)(πΉβ€˜π‘¦)))
2622, 23, 24, 25syl3anc 1372 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (πΉβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯( ·𝑠 β€˜π‘)(πΉβ€˜π‘¦)))
27 simplr 768 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝐺 ∈ (𝑀 LMHom 𝑁))
284, 6, 1, 2, 3lmhmlin 20511 . . . . . 6 ((𝐺 ∈ (𝑀 LMHom 𝑁) ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) β†’ (πΊβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯( ·𝑠 β€˜π‘)(πΊβ€˜π‘¦)))
2927, 23, 24, 28syl3anc 1372 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (πΊβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯( ·𝑠 β€˜π‘)(πΊβ€˜π‘¦)))
3026, 29oveq12d 7376 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ ((πΉβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) + (πΊβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦))) = ((π‘₯( ·𝑠 β€˜π‘)(πΉβ€˜π‘¦)) + (π‘₯( ·𝑠 β€˜π‘)(πΊβ€˜π‘¦))))
319ad2antrr 725 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝑁 ∈ LMod)
3211fveq2d 6847 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) β†’ (Baseβ€˜(Scalarβ€˜π‘)) = (Baseβ€˜(Scalarβ€˜π‘€)))
3332ad2antrr 725 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (Baseβ€˜(Scalarβ€˜π‘)) = (Baseβ€˜(Scalarβ€˜π‘€)))
3423, 33eleqtrrd 2837 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘)))
35 eqid 2733 . . . . . . . 8 (Baseβ€˜π‘) = (Baseβ€˜π‘)
361, 35lmhmf 20510 . . . . . . 7 (𝐹 ∈ (𝑀 LMHom 𝑁) β†’ 𝐹:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘))
3736ad2antrr 725 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝐹:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘))
3837, 24ffvelcdmd 7037 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (πΉβ€˜π‘¦) ∈ (Baseβ€˜π‘))
391, 35lmhmf 20510 . . . . . . 7 (𝐺 ∈ (𝑀 LMHom 𝑁) β†’ 𝐺:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘))
4039ad2antlr 726 . . . . . 6 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝐺:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘))
4140, 24ffvelcdmd 7037 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (πΊβ€˜π‘¦) ∈ (Baseβ€˜π‘))
42 eqid 2733 . . . . . 6 (Baseβ€˜(Scalarβ€˜π‘)) = (Baseβ€˜(Scalarβ€˜π‘))
4335, 19, 5, 3, 42lmodvsdi 20360 . . . . 5 ((𝑁 ∈ LMod ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘)) ∧ (πΉβ€˜π‘¦) ∈ (Baseβ€˜π‘) ∧ (πΊβ€˜π‘¦) ∈ (Baseβ€˜π‘))) β†’ (π‘₯( ·𝑠 β€˜π‘)((πΉβ€˜π‘¦) + (πΊβ€˜π‘¦))) = ((π‘₯( ·𝑠 β€˜π‘)(πΉβ€˜π‘¦)) + (π‘₯( ·𝑠 β€˜π‘)(πΊβ€˜π‘¦))))
4431, 34, 38, 41, 43syl13anc 1373 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (π‘₯( ·𝑠 β€˜π‘)((πΉβ€˜π‘¦) + (πΊβ€˜π‘¦))) = ((π‘₯( ·𝑠 β€˜π‘)(πΉβ€˜π‘¦)) + (π‘₯( ·𝑠 β€˜π‘)(πΊβ€˜π‘¦))))
4530, 44eqtr4d 2776 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ ((πΉβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) + (πΊβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦))) = (π‘₯( ·𝑠 β€˜π‘)((πΉβ€˜π‘¦) + (πΊβ€˜π‘¦))))
4637ffnd 6670 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝐹 Fn (Baseβ€˜π‘€))
4740ffnd 6670 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝐺 Fn (Baseβ€˜π‘€))
48 fvexd 6858 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (Baseβ€˜π‘€) ∈ V)
497ad2antrr 725 . . . . 5 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ 𝑀 ∈ LMod)
501, 4, 2, 6lmodvscl 20354 . . . . 5 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€)) β†’ (π‘₯( ·𝑠 β€˜π‘€)𝑦) ∈ (Baseβ€˜π‘€))
5149, 23, 24, 50syl3anc 1372 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (π‘₯( ·𝑠 β€˜π‘€)𝑦) ∈ (Baseβ€˜π‘€))
52 fnfvof 7635 . . . 4 (((𝐹 Fn (Baseβ€˜π‘€) ∧ 𝐺 Fn (Baseβ€˜π‘€)) ∧ ((Baseβ€˜π‘€) ∈ V ∧ (π‘₯( ·𝑠 β€˜π‘€)𝑦) ∈ (Baseβ€˜π‘€))) β†’ ((𝐹 ∘f + 𝐺)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = ((πΉβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) + (πΊβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦))))
5346, 47, 48, 51, 52syl22anc 838 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ ((𝐹 ∘f + 𝐺)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = ((πΉβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) + (πΊβ€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦))))
54 fnfvof 7635 . . . . 5 (((𝐹 Fn (Baseβ€˜π‘€) ∧ 𝐺 Fn (Baseβ€˜π‘€)) ∧ ((Baseβ€˜π‘€) ∈ V ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ ((𝐹 ∘f + 𝐺)β€˜π‘¦) = ((πΉβ€˜π‘¦) + (πΊβ€˜π‘¦)))
5546, 47, 48, 24, 54syl22anc 838 . . . 4 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ ((𝐹 ∘f + 𝐺)β€˜π‘¦) = ((πΉβ€˜π‘¦) + (πΊβ€˜π‘¦)))
5655oveq2d 7374 . . 3 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ (π‘₯( ·𝑠 β€˜π‘)((𝐹 ∘f + 𝐺)β€˜π‘¦)) = (π‘₯( ·𝑠 β€˜π‘)((πΉβ€˜π‘¦) + (πΊβ€˜π‘¦))))
5745, 53, 563eqtr4d 2783 . 2 (((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) ∧ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)) ∧ 𝑦 ∈ (Baseβ€˜π‘€))) β†’ ((𝐹 ∘f + 𝐺)β€˜(π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯( ·𝑠 β€˜π‘)((𝐹 ∘f + 𝐺)β€˜π‘¦)))
581, 2, 3, 4, 5, 6, 8, 10, 12, 21, 57islmhmd 20515 1 ((𝐹 ∈ (𝑀 LMHom 𝑁) ∧ 𝐺 ∈ (𝑀 LMHom 𝑁)) β†’ (𝐹 ∘f + 𝐺) ∈ (𝑀 LMHom 𝑁))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3444   Fn wfn 6492  βŸΆwf 6493  β€˜cfv 6497  (class class class)co 7358   ∘f cof 7616  Basecbs 17088  +gcplusg 17138  Scalarcsca 17141   ·𝑠 cvsca 17142   GrpHom cghm 19010  Abelcabl 19568  LModclmod 20336   LMHom clmhm 20495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5243  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-cnex 11112  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132  ax-pre-mulgt0 11133
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3930  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-iun 4957  df-br 5107  df-opab 5169  df-mpt 5190  df-tr 5224  df-id 5532  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5589  df-we 5591  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-pred 6254  df-ord 6321  df-on 6322  df-lim 6323  df-suc 6324  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-of 7618  df-om 7804  df-2nd 7923  df-frecs 8213  df-wrecs 8244  df-recs 8318  df-rdg 8357  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-xr 11198  df-ltxr 11199  df-le 11200  df-sub 11392  df-neg 11393  df-nn 12159  df-2 12221  df-sets 17041  df-slot 17059  df-ndx 17071  df-base 17089  df-plusg 17151  df-0g 17328  df-mgm 18502  df-sgrp 18551  df-mnd 18562  df-grp 18756  df-minusg 18757  df-ghm 19011  df-cmn 19569  df-abl 19570  df-mgp 19902  df-ur 19919  df-ring 19971  df-lmod 20338  df-lmhm 20498
This theorem is referenced by:  nmhmplusg  24137  mendring  41562
  Copyright terms: Public domain W3C validator