Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem8 | Structured version Visualization version GIF version |
Description: Part of proof of part 14 in [Baer] p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem8.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem8.q | ⊢ + = (+g‘𝑈) |
hdmap14lem8.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem8.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem8.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap14lem8.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem8.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem8.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem8.d | ⊢ ✚ = (+g‘𝐶) |
hdmap14lem8.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem8.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem8.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem8.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem8.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem8.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
hdmap14lem8.i | ⊢ (𝜑 → 𝐼 ∈ 𝐴) |
hdmap14lem8.xx | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
hdmap14lem8.yy | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
hdmap14lem8.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
hdmap14lem8.j | ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
hdmap14lem8.xy | ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) |
Ref | Expression |
---|---|
hdmap14lem8 | ⊢ (𝜑 → ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem8.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem8.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | hdmap14lem8.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 39533 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | hdmap14lem8.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐴) | |
6 | hdmap14lem8.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | hdmap14lem8.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
8 | eqid 2738 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | hdmap14lem8.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
10 | hdmap14lem8.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
11 | 10 | eldifad 3895 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
12 | 1, 6, 7, 2, 8, 9, 3, 11 | hdmapcl 39771 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (Base‘𝐶)) |
13 | hdmap14lem8.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
14 | 13 | eldifad 3895 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
15 | 1, 6, 7, 2, 8, 9, 3, 14 | hdmapcl 39771 | . . 3 ⊢ (𝜑 → (𝑆‘𝑌) ∈ (Base‘𝐶)) |
16 | hdmap14lem8.d | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
17 | hdmap14lem8.p | . . . 4 ⊢ 𝑃 = (Scalar‘𝐶) | |
18 | hdmap14lem8.e | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
19 | hdmap14lem8.a | . . . 4 ⊢ 𝐴 = (Base‘𝑃) | |
20 | 8, 16, 17, 18, 19 | lmodvsdi 20061 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ (𝐽 ∈ 𝐴 ∧ (𝑆‘𝑋) ∈ (Base‘𝐶) ∧ (𝑆‘𝑌) ∈ (Base‘𝐶))) → (𝐽 ∙ ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) = ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌)))) |
21 | 4, 5, 12, 15, 20 | syl13anc 1370 | . 2 ⊢ (𝜑 → (𝐽 ∙ ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) = ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌)))) |
22 | hdmap14lem8.q | . . . . 5 ⊢ + = (+g‘𝑈) | |
23 | 1, 6, 7, 22, 2, 16, 9, 3, 11, 14 | hdmapadd 39784 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) |
24 | 23 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐽 ∙ (𝑆‘(𝑋 + 𝑌))) = (𝐽 ∙ ((𝑆‘𝑋) ✚ (𝑆‘𝑌)))) |
25 | hdmap14lem8.xy | . . . 4 ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) | |
26 | 1, 6, 3 | dvhlmod 39051 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
27 | hdmap14lem8.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
28 | hdmap14lem8.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑈) | |
29 | hdmap14lem8.t | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑈) | |
30 | hdmap14lem8.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
31 | 7, 22, 28, 29, 30 | lmodvsdi 20061 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ (𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐹 · (𝑋 + 𝑌)) = ((𝐹 · 𝑋) + (𝐹 · 𝑌))) |
32 | 26, 27, 11, 14, 31 | syl13anc 1370 | . . . . . 6 ⊢ (𝜑 → (𝐹 · (𝑋 + 𝑌)) = ((𝐹 · 𝑋) + (𝐹 · 𝑌))) |
33 | 32 | fveq2d 6760 | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑆‘((𝐹 · 𝑋) + (𝐹 · 𝑌)))) |
34 | 7, 28, 29, 30 | lmodvscl 20055 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 · 𝑋) ∈ 𝑉) |
35 | 26, 27, 11, 34 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝑋) ∈ 𝑉) |
36 | 7, 28, 29, 30 | lmodvscl 20055 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → (𝐹 · 𝑌) ∈ 𝑉) |
37 | 26, 27, 14, 36 | syl3anc 1369 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝑌) ∈ 𝑉) |
38 | 1, 6, 7, 22, 2, 16, 9, 3, 35, 37 | hdmapadd 39784 | . . . . 5 ⊢ (𝜑 → (𝑆‘((𝐹 · 𝑋) + (𝐹 · 𝑌))) = ((𝑆‘(𝐹 · 𝑋)) ✚ (𝑆‘(𝐹 · 𝑌)))) |
39 | hdmap14lem8.xx | . . . . . 6 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
40 | hdmap14lem8.yy | . . . . . 6 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) | |
41 | 39, 40 | oveq12d 7273 | . . . . 5 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) ✚ (𝑆‘(𝐹 · 𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
42 | 33, 38, 41 | 3eqtrd 2782 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
43 | 25, 42 | eqtr3d 2780 | . . 3 ⊢ (𝜑 → (𝐽 ∙ (𝑆‘(𝑋 + 𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
44 | 24, 43 | eqtr3d 2780 | . 2 ⊢ (𝜑 → (𝐽 ∙ ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
45 | 21, 44 | eqtr3d 2780 | 1 ⊢ (𝜑 → ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 ·𝑠 cvsca 16892 0gc0g 17067 LModclmod 20038 LSpanclspn 20148 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 HDMapchdma 39733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 df-hvmap 39698 df-hdmap1 39734 df-hdmap 39735 |
This theorem is referenced by: hdmap14lem9 39817 |
Copyright terms: Public domain | W3C validator |