Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem8 Structured version   Visualization version   GIF version

Theorem hdmap14lem8 41343
Description: Part of proof of part 14 in [Baer] p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem8.h 𝐻 = (LHyp‘𝐾)
hdmap14lem8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem8.v 𝑉 = (Base‘𝑈)
hdmap14lem8.q + = (+g𝑈)
hdmap14lem8.t · = ( ·𝑠𝑈)
hdmap14lem8.o 0 = (0g𝑈)
hdmap14lem8.n 𝑁 = (LSpan‘𝑈)
hdmap14lem8.r 𝑅 = (Scalar‘𝑈)
hdmap14lem8.b 𝐵 = (Base‘𝑅)
hdmap14lem8.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem8.d = (+g𝐶)
hdmap14lem8.e = ( ·𝑠𝐶)
hdmap14lem8.p 𝑃 = (Scalar‘𝐶)
hdmap14lem8.a 𝐴 = (Base‘𝑃)
hdmap14lem8.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem8.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem8.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem8.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap14lem8.f (𝜑𝐹𝐵)
hdmap14lem8.g (𝜑𝐺𝐴)
hdmap14lem8.i (𝜑𝐼𝐴)
hdmap14lem8.xx (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
hdmap14lem8.yy (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 (𝑆𝑌)))
hdmap14lem8.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
hdmap14lem8.j (𝜑𝐽𝐴)
hdmap14lem8.xy (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 (𝑆‘(𝑋 + 𝑌))))
Assertion
Ref Expression
hdmap14lem8 (𝜑 → ((𝐽 (𝑆𝑋)) (𝐽 (𝑆𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))

Proof of Theorem hdmap14lem8
StepHypRef Expression
1 hdmap14lem8.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap14lem8.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmap14lem8.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41060 . . 3 (𝜑𝐶 ∈ LMod)
5 hdmap14lem8.j . . 3 (𝜑𝐽𝐴)
6 hdmap14lem8.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 hdmap14lem8.v . . . 4 𝑉 = (Base‘𝑈)
8 eqid 2728 . . . 4 (Base‘𝐶) = (Base‘𝐶)
9 hdmap14lem8.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
10 hdmap14lem8.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3957 . . . 4 (𝜑𝑋𝑉)
121, 6, 7, 2, 8, 9, 3, 11hdmapcl 41298 . . 3 (𝜑 → (𝑆𝑋) ∈ (Base‘𝐶))
13 hdmap14lem8.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3957 . . . 4 (𝜑𝑌𝑉)
151, 6, 7, 2, 8, 9, 3, 14hdmapcl 41298 . . 3 (𝜑 → (𝑆𝑌) ∈ (Base‘𝐶))
16 hdmap14lem8.d . . . 4 = (+g𝐶)
17 hdmap14lem8.p . . . 4 𝑃 = (Scalar‘𝐶)
18 hdmap14lem8.e . . . 4 = ( ·𝑠𝐶)
19 hdmap14lem8.a . . . 4 𝐴 = (Base‘𝑃)
208, 16, 17, 18, 19lmodvsdi 20762 . . 3 ((𝐶 ∈ LMod ∧ (𝐽𝐴 ∧ (𝑆𝑋) ∈ (Base‘𝐶) ∧ (𝑆𝑌) ∈ (Base‘𝐶))) → (𝐽 ((𝑆𝑋) (𝑆𝑌))) = ((𝐽 (𝑆𝑋)) (𝐽 (𝑆𝑌))))
214, 5, 12, 15, 20syl13anc 1370 . 2 (𝜑 → (𝐽 ((𝑆𝑋) (𝑆𝑌))) = ((𝐽 (𝑆𝑋)) (𝐽 (𝑆𝑌))))
22 hdmap14lem8.q . . . . 5 + = (+g𝑈)
231, 6, 7, 22, 2, 16, 9, 3, 11, 14hdmapadd 41311 . . . 4 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
2423oveq2d 7431 . . 3 (𝜑 → (𝐽 (𝑆‘(𝑋 + 𝑌))) = (𝐽 ((𝑆𝑋) (𝑆𝑌))))
25 hdmap14lem8.xy . . . 4 (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 (𝑆‘(𝑋 + 𝑌))))
261, 6, 3dvhlmod 40578 . . . . . . 7 (𝜑𝑈 ∈ LMod)
27 hdmap14lem8.f . . . . . . 7 (𝜑𝐹𝐵)
28 hdmap14lem8.r . . . . . . . 8 𝑅 = (Scalar‘𝑈)
29 hdmap14lem8.t . . . . . . . 8 · = ( ·𝑠𝑈)
30 hdmap14lem8.b . . . . . . . 8 𝐵 = (Base‘𝑅)
317, 22, 28, 29, 30lmodvsdi 20762 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐹𝐵𝑋𝑉𝑌𝑉)) → (𝐹 · (𝑋 + 𝑌)) = ((𝐹 · 𝑋) + (𝐹 · 𝑌)))
3226, 27, 11, 14, 31syl13anc 1370 . . . . . 6 (𝜑 → (𝐹 · (𝑋 + 𝑌)) = ((𝐹 · 𝑋) + (𝐹 · 𝑌)))
3332fveq2d 6896 . . . . 5 (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑆‘((𝐹 · 𝑋) + (𝐹 · 𝑌))))
347, 28, 29, 30lmodvscl 20755 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐹𝐵𝑋𝑉) → (𝐹 · 𝑋) ∈ 𝑉)
3526, 27, 11, 34syl3anc 1369 . . . . . 6 (𝜑 → (𝐹 · 𝑋) ∈ 𝑉)
367, 28, 29, 30lmodvscl 20755 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐹𝐵𝑌𝑉) → (𝐹 · 𝑌) ∈ 𝑉)
3726, 27, 14, 36syl3anc 1369 . . . . . 6 (𝜑 → (𝐹 · 𝑌) ∈ 𝑉)
381, 6, 7, 22, 2, 16, 9, 3, 35, 37hdmapadd 41311 . . . . 5 (𝜑 → (𝑆‘((𝐹 · 𝑋) + (𝐹 · 𝑌))) = ((𝑆‘(𝐹 · 𝑋)) (𝑆‘(𝐹 · 𝑌))))
39 hdmap14lem8.xx . . . . . 6 (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
40 hdmap14lem8.yy . . . . . 6 (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 (𝑆𝑌)))
4139, 40oveq12d 7433 . . . . 5 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) (𝑆‘(𝐹 · 𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
4233, 38, 413eqtrd 2772 . . . 4 (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
4325, 42eqtr3d 2770 . . 3 (𝜑 → (𝐽 (𝑆‘(𝑋 + 𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
4424, 43eqtr3d 2770 . 2 (𝜑 → (𝐽 ((𝑆𝑋) (𝑆𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
4521, 44eqtr3d 2770 1 (𝜑 → ((𝐽 (𝑆𝑋)) (𝐽 (𝑆𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wne 2936  cdif 3942  {csn 4625  cfv 6543  (class class class)co 7415  Basecbs 17174  +gcplusg 17227  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17415  LModclmod 20737  LSpanclspn 20849  HLchlt 38817  LHypclh 39452  DVecHcdvh 40546  LCDualclcd 41054  HDMapchdma 41260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210  ax-riotaBAD 38420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-nel 3043  df-ral 3058  df-rex 3067  df-rmo 3372  df-reu 3373  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4905  df-int 4946  df-iun 4994  df-iin 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-of 7680  df-om 7866  df-1st 7988  df-2nd 7989  df-tpos 8226  df-undef 8273  df-frecs 8281  df-wrecs 8312  df-recs 8386  df-rdg 8425  df-1o 8481  df-er 8719  df-map 8841  df-en 8959  df-dom 8960  df-sdom 8961  df-fin 8962  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-2 12300  df-3 12301  df-4 12302  df-5 12303  df-6 12304  df-n0 12498  df-z 12584  df-uz 12848  df-fz 13512  df-struct 17110  df-sets 17127  df-slot 17145  df-ndx 17157  df-base 17175  df-ress 17204  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-0g 17417  df-mre 17560  df-mrc 17561  df-acs 17563  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-p1 18412  df-lat 18418  df-clat 18485  df-mgm 18594  df-sgrp 18673  df-mnd 18689  df-submnd 18735  df-grp 18887  df-minusg 18888  df-sbg 18889  df-subg 19072  df-cntz 19262  df-oppg 19291  df-lsm 19585  df-cmn 19731  df-abl 19732  df-mgp 20069  df-rng 20087  df-ur 20116  df-ring 20169  df-oppr 20267  df-dvdsr 20290  df-unit 20291  df-invr 20321  df-dvr 20334  df-drng 20620  df-lmod 20739  df-lss 20810  df-lsp 20850  df-lvec 20982  df-lsatoms 38443  df-lshyp 38444  df-lcv 38486  df-lfl 38525  df-lkr 38553  df-ldual 38591  df-oposet 38643  df-ol 38645  df-oml 38646  df-covers 38733  df-ats 38734  df-atl 38765  df-cvlat 38789  df-hlat 38818  df-llines 38966  df-lplanes 38967  df-lvols 38968  df-lines 38969  df-psubsp 38971  df-pmap 38972  df-padd 39264  df-lhyp 39456  df-laut 39457  df-ldil 39572  df-ltrn 39573  df-trl 39627  df-tgrp 40211  df-tendo 40223  df-edring 40225  df-dveca 40471  df-disoa 40497  df-dvech 40547  df-dib 40607  df-dic 40641  df-dih 40697  df-doch 40816  df-djh 40863  df-lcdual 41055  df-mapd 41093  df-hvmap 41225  df-hdmap1 41261  df-hdmap 41262
This theorem is referenced by:  hdmap14lem9  41344
  Copyright terms: Public domain W3C validator