| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem8 | Structured version Visualization version GIF version | ||
| Description: Part of proof of part 14 in [Baer] p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015.) |
| Ref | Expression |
|---|---|
| hdmap14lem8.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap14lem8.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap14lem8.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap14lem8.q | ⊢ + = (+g‘𝑈) |
| hdmap14lem8.t | ⊢ · = ( ·𝑠 ‘𝑈) |
| hdmap14lem8.o | ⊢ 0 = (0g‘𝑈) |
| hdmap14lem8.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap14lem8.r | ⊢ 𝑅 = (Scalar‘𝑈) |
| hdmap14lem8.b | ⊢ 𝐵 = (Base‘𝑅) |
| hdmap14lem8.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap14lem8.d | ⊢ ✚ = (+g‘𝐶) |
| hdmap14lem8.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
| hdmap14lem8.p | ⊢ 𝑃 = (Scalar‘𝐶) |
| hdmap14lem8.a | ⊢ 𝐴 = (Base‘𝑃) |
| hdmap14lem8.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
| hdmap14lem8.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap14lem8.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem8.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| hdmap14lem8.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| hdmap14lem8.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
| hdmap14lem8.i | ⊢ (𝜑 → 𝐼 ∈ 𝐴) |
| hdmap14lem8.xx | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
| hdmap14lem8.yy | ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) |
| hdmap14lem8.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| hdmap14lem8.j | ⊢ (𝜑 → 𝐽 ∈ 𝐴) |
| hdmap14lem8.xy | ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) |
| Ref | Expression |
|---|---|
| hdmap14lem8 | ⊢ (𝜑 → ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap14lem8.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap14lem8.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 3 | hdmap14lem8.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 4 | 1, 2, 3 | lcdlmod 41575 | . . 3 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 5 | hdmap14lem8.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝐴) | |
| 6 | hdmap14lem8.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 7 | hdmap14lem8.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 8 | eqid 2729 | . . . 4 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | hdmap14lem8.s | . . . 4 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
| 10 | hdmap14lem8.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 11 | 10 | eldifad 3915 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 12 | 1, 6, 7, 2, 8, 9, 3, 11 | hdmapcl 41813 | . . 3 ⊢ (𝜑 → (𝑆‘𝑋) ∈ (Base‘𝐶)) |
| 13 | hdmap14lem8.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 14 | 13 | eldifad 3915 | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 15 | 1, 6, 7, 2, 8, 9, 3, 14 | hdmapcl 41813 | . . 3 ⊢ (𝜑 → (𝑆‘𝑌) ∈ (Base‘𝐶)) |
| 16 | hdmap14lem8.d | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
| 17 | hdmap14lem8.p | . . . 4 ⊢ 𝑃 = (Scalar‘𝐶) | |
| 18 | hdmap14lem8.e | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
| 19 | hdmap14lem8.a | . . . 4 ⊢ 𝐴 = (Base‘𝑃) | |
| 20 | 8, 16, 17, 18, 19 | lmodvsdi 20788 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ (𝐽 ∈ 𝐴 ∧ (𝑆‘𝑋) ∈ (Base‘𝐶) ∧ (𝑆‘𝑌) ∈ (Base‘𝐶))) → (𝐽 ∙ ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) = ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌)))) |
| 21 | 4, 5, 12, 15, 20 | syl13anc 1374 | . 2 ⊢ (𝜑 → (𝐽 ∙ ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) = ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌)))) |
| 22 | hdmap14lem8.q | . . . . 5 ⊢ + = (+g‘𝑈) | |
| 23 | 1, 6, 7, 22, 2, 16, 9, 3, 11, 14 | hdmapadd 41826 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) |
| 24 | 23 | oveq2d 7365 | . . 3 ⊢ (𝜑 → (𝐽 ∙ (𝑆‘(𝑋 + 𝑌))) = (𝐽 ∙ ((𝑆‘𝑋) ✚ (𝑆‘𝑌)))) |
| 25 | hdmap14lem8.xy | . . . 4 ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 ∙ (𝑆‘(𝑋 + 𝑌)))) | |
| 26 | 1, 6, 3 | dvhlmod 41093 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 27 | hdmap14lem8.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 28 | hdmap14lem8.r | . . . . . . . 8 ⊢ 𝑅 = (Scalar‘𝑈) | |
| 29 | hdmap14lem8.t | . . . . . . . 8 ⊢ · = ( ·𝑠 ‘𝑈) | |
| 30 | hdmap14lem8.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 31 | 7, 22, 28, 29, 30 | lmodvsdi 20788 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ (𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉)) → (𝐹 · (𝑋 + 𝑌)) = ((𝐹 · 𝑋) + (𝐹 · 𝑌))) |
| 32 | 26, 27, 11, 14, 31 | syl13anc 1374 | . . . . . 6 ⊢ (𝜑 → (𝐹 · (𝑋 + 𝑌)) = ((𝐹 · 𝑋) + (𝐹 · 𝑌))) |
| 33 | 32 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑆‘((𝐹 · 𝑋) + (𝐹 · 𝑌)))) |
| 34 | 7, 28, 29, 30 | lmodvscl 20781 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝑉) → (𝐹 · 𝑋) ∈ 𝑉) |
| 35 | 26, 27, 11, 34 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝑋) ∈ 𝑉) |
| 36 | 7, 28, 29, 30 | lmodvscl 20781 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉) → (𝐹 · 𝑌) ∈ 𝑉) |
| 37 | 26, 27, 14, 36 | syl3anc 1373 | . . . . . 6 ⊢ (𝜑 → (𝐹 · 𝑌) ∈ 𝑉) |
| 38 | 1, 6, 7, 22, 2, 16, 9, 3, 35, 37 | hdmapadd 41826 | . . . . 5 ⊢ (𝜑 → (𝑆‘((𝐹 · 𝑋) + (𝐹 · 𝑌))) = ((𝑆‘(𝐹 · 𝑋)) ✚ (𝑆‘(𝐹 · 𝑌)))) |
| 39 | hdmap14lem8.xx | . . . . . 6 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
| 40 | hdmap14lem8.yy | . . . . . 6 ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 ∙ (𝑆‘𝑌))) | |
| 41 | 39, 40 | oveq12d 7367 | . . . . 5 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) ✚ (𝑆‘(𝐹 · 𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
| 42 | 33, 38, 41 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
| 43 | 25, 42 | eqtr3d 2766 | . . 3 ⊢ (𝜑 → (𝐽 ∙ (𝑆‘(𝑋 + 𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
| 44 | 24, 43 | eqtr3d 2766 | . 2 ⊢ (𝜑 → (𝐽 ∙ ((𝑆‘𝑋) ✚ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
| 45 | 21, 44 | eqtr3d 2766 | 1 ⊢ (𝜑 → ((𝐽 ∙ (𝑆‘𝑋)) ✚ (𝐽 ∙ (𝑆‘𝑌))) = ((𝐺 ∙ (𝑆‘𝑋)) ✚ (𝐼 ∙ (𝑆‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3900 {csn 4577 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 Scalarcsca 17164 ·𝑠 cvsca 17165 0gc0g 17343 LModclmod 20763 LSpanclspn 20874 HLchlt 39333 LHypclh 39967 DVecHcdvh 41061 LCDualclcd 41569 HDMapchdma 41775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-riotaBAD 38936 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-ot 4586 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-tpos 8159 df-undef 8206 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-subg 19002 df-cntz 19196 df-oppg 19225 df-lsm 19515 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lvec 21007 df-lsatoms 38959 df-lshyp 38960 df-lcv 39002 df-lfl 39041 df-lkr 39069 df-ldual 39107 df-oposet 39159 df-ol 39161 df-oml 39162 df-covers 39249 df-ats 39250 df-atl 39281 df-cvlat 39305 df-hlat 39334 df-llines 39481 df-lplanes 39482 df-lvols 39483 df-lines 39484 df-psubsp 39486 df-pmap 39487 df-padd 39779 df-lhyp 39971 df-laut 39972 df-ldil 40087 df-ltrn 40088 df-trl 40142 df-tgrp 40726 df-tendo 40738 df-edring 40740 df-dveca 40986 df-disoa 41012 df-dvech 41062 df-dib 41122 df-dic 41156 df-dih 41212 df-doch 41331 df-djh 41378 df-lcdual 41570 df-mapd 41608 df-hvmap 41740 df-hdmap1 41776 df-hdmap 41777 |
| This theorem is referenced by: hdmap14lem9 41859 |
| Copyright terms: Public domain | W3C validator |