Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem8 Structured version   Visualization version   GIF version

Theorem hdmap14lem8 41832
Description: Part of proof of part 14 in [Baer] p. 49 lines 33-35. (Contributed by NM, 1-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem8.h 𝐻 = (LHyp‘𝐾)
hdmap14lem8.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem8.v 𝑉 = (Base‘𝑈)
hdmap14lem8.q + = (+g𝑈)
hdmap14lem8.t · = ( ·𝑠𝑈)
hdmap14lem8.o 0 = (0g𝑈)
hdmap14lem8.n 𝑁 = (LSpan‘𝑈)
hdmap14lem8.r 𝑅 = (Scalar‘𝑈)
hdmap14lem8.b 𝐵 = (Base‘𝑅)
hdmap14lem8.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem8.d = (+g𝐶)
hdmap14lem8.e = ( ·𝑠𝐶)
hdmap14lem8.p 𝑃 = (Scalar‘𝐶)
hdmap14lem8.a 𝐴 = (Base‘𝑃)
hdmap14lem8.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem8.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem8.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem8.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap14lem8.f (𝜑𝐹𝐵)
hdmap14lem8.g (𝜑𝐺𝐴)
hdmap14lem8.i (𝜑𝐼𝐴)
hdmap14lem8.xx (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
hdmap14lem8.yy (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 (𝑆𝑌)))
hdmap14lem8.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
hdmap14lem8.j (𝜑𝐽𝐴)
hdmap14lem8.xy (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 (𝑆‘(𝑋 + 𝑌))))
Assertion
Ref Expression
hdmap14lem8 (𝜑 → ((𝐽 (𝑆𝑋)) (𝐽 (𝑆𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))

Proof of Theorem hdmap14lem8
StepHypRef Expression
1 hdmap14lem8.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap14lem8.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
3 hdmap14lem8.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3lcdlmod 41549 . . 3 (𝜑𝐶 ∈ LMod)
5 hdmap14lem8.j . . 3 (𝜑𝐽𝐴)
6 hdmap14lem8.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
7 hdmap14lem8.v . . . 4 𝑉 = (Base‘𝑈)
8 eqid 2740 . . . 4 (Base‘𝐶) = (Base‘𝐶)
9 hdmap14lem8.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
10 hdmap14lem8.x . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
1110eldifad 3988 . . . 4 (𝜑𝑋𝑉)
121, 6, 7, 2, 8, 9, 3, 11hdmapcl 41787 . . 3 (𝜑 → (𝑆𝑋) ∈ (Base‘𝐶))
13 hdmap14lem8.y . . . . 5 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
1413eldifad 3988 . . . 4 (𝜑𝑌𝑉)
151, 6, 7, 2, 8, 9, 3, 14hdmapcl 41787 . . 3 (𝜑 → (𝑆𝑌) ∈ (Base‘𝐶))
16 hdmap14lem8.d . . . 4 = (+g𝐶)
17 hdmap14lem8.p . . . 4 𝑃 = (Scalar‘𝐶)
18 hdmap14lem8.e . . . 4 = ( ·𝑠𝐶)
19 hdmap14lem8.a . . . 4 𝐴 = (Base‘𝑃)
208, 16, 17, 18, 19lmodvsdi 20905 . . 3 ((𝐶 ∈ LMod ∧ (𝐽𝐴 ∧ (𝑆𝑋) ∈ (Base‘𝐶) ∧ (𝑆𝑌) ∈ (Base‘𝐶))) → (𝐽 ((𝑆𝑋) (𝑆𝑌))) = ((𝐽 (𝑆𝑋)) (𝐽 (𝑆𝑌))))
214, 5, 12, 15, 20syl13anc 1372 . 2 (𝜑 → (𝐽 ((𝑆𝑋) (𝑆𝑌))) = ((𝐽 (𝑆𝑋)) (𝐽 (𝑆𝑌))))
22 hdmap14lem8.q . . . . 5 + = (+g𝑈)
231, 6, 7, 22, 2, 16, 9, 3, 11, 14hdmapadd 41800 . . . 4 (𝜑 → (𝑆‘(𝑋 + 𝑌)) = ((𝑆𝑋) (𝑆𝑌)))
2423oveq2d 7464 . . 3 (𝜑 → (𝐽 (𝑆‘(𝑋 + 𝑌))) = (𝐽 ((𝑆𝑋) (𝑆𝑌))))
25 hdmap14lem8.xy . . . 4 (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝐽 (𝑆‘(𝑋 + 𝑌))))
261, 6, 3dvhlmod 41067 . . . . . . 7 (𝜑𝑈 ∈ LMod)
27 hdmap14lem8.f . . . . . . 7 (𝜑𝐹𝐵)
28 hdmap14lem8.r . . . . . . . 8 𝑅 = (Scalar‘𝑈)
29 hdmap14lem8.t . . . . . . . 8 · = ( ·𝑠𝑈)
30 hdmap14lem8.b . . . . . . . 8 𝐵 = (Base‘𝑅)
317, 22, 28, 29, 30lmodvsdi 20905 . . . . . . 7 ((𝑈 ∈ LMod ∧ (𝐹𝐵𝑋𝑉𝑌𝑉)) → (𝐹 · (𝑋 + 𝑌)) = ((𝐹 · 𝑋) + (𝐹 · 𝑌)))
3226, 27, 11, 14, 31syl13anc 1372 . . . . . 6 (𝜑 → (𝐹 · (𝑋 + 𝑌)) = ((𝐹 · 𝑋) + (𝐹 · 𝑌)))
3332fveq2d 6924 . . . . 5 (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = (𝑆‘((𝐹 · 𝑋) + (𝐹 · 𝑌))))
347, 28, 29, 30lmodvscl 20898 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐹𝐵𝑋𝑉) → (𝐹 · 𝑋) ∈ 𝑉)
3526, 27, 11, 34syl3anc 1371 . . . . . 6 (𝜑 → (𝐹 · 𝑋) ∈ 𝑉)
367, 28, 29, 30lmodvscl 20898 . . . . . . 7 ((𝑈 ∈ LMod ∧ 𝐹𝐵𝑌𝑉) → (𝐹 · 𝑌) ∈ 𝑉)
3726, 27, 14, 36syl3anc 1371 . . . . . 6 (𝜑 → (𝐹 · 𝑌) ∈ 𝑉)
381, 6, 7, 22, 2, 16, 9, 3, 35, 37hdmapadd 41800 . . . . 5 (𝜑 → (𝑆‘((𝐹 · 𝑋) + (𝐹 · 𝑌))) = ((𝑆‘(𝐹 · 𝑋)) (𝑆‘(𝐹 · 𝑌))))
39 hdmap14lem8.xx . . . . . 6 (𝜑 → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
40 hdmap14lem8.yy . . . . . 6 (𝜑 → (𝑆‘(𝐹 · 𝑌)) = (𝐼 (𝑆𝑌)))
4139, 40oveq12d 7466 . . . . 5 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) (𝑆‘(𝐹 · 𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
4233, 38, 413eqtrd 2784 . . . 4 (𝜑 → (𝑆‘(𝐹 · (𝑋 + 𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
4325, 42eqtr3d 2782 . . 3 (𝜑 → (𝐽 (𝑆‘(𝑋 + 𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
4424, 43eqtr3d 2782 . 2 (𝜑 → (𝐽 ((𝑆𝑋) (𝑆𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
4521, 44eqtr3d 2782 1 (𝜑 → ((𝐽 (𝑆𝑋)) (𝐽 (𝑆𝑌))) = ((𝐺 (𝑆𝑋)) (𝐼 (𝑆𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  cdif 3973  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  Scalarcsca 17314   ·𝑠 cvsca 17315  0gc0g 17499  LModclmod 20880  LSpanclspn 20992  HLchlt 39306  LHypclh 39941  DVecHcdvh 41035  LCDualclcd 41543  HDMapchdma 41749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-riotaBAD 38909
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-tpos 8267  df-undef 8314  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-0g 17501  df-mre 17644  df-mrc 17645  df-acs 17647  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-oppg 19386  df-lsm 19678  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-oppr 20360  df-dvdsr 20383  df-unit 20384  df-invr 20414  df-dvr 20427  df-nzr 20539  df-rlreg 20716  df-domn 20717  df-drng 20753  df-lmod 20882  df-lss 20953  df-lsp 20993  df-lvec 21125  df-lsatoms 38932  df-lshyp 38933  df-lcv 38975  df-lfl 39014  df-lkr 39042  df-ldual 39080  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457  df-lines 39458  df-psubsp 39460  df-pmap 39461  df-padd 39753  df-lhyp 39945  df-laut 39946  df-ldil 40061  df-ltrn 40062  df-trl 40116  df-tgrp 40700  df-tendo 40712  df-edring 40714  df-dveca 40960  df-disoa 40986  df-dvech 41036  df-dib 41096  df-dic 41130  df-dih 41186  df-doch 41305  df-djh 41352  df-lcdual 41544  df-mapd 41582  df-hvmap 41714  df-hdmap1 41750  df-hdmap 41751
This theorem is referenced by:  hdmap14lem9  41833
  Copyright terms: Public domain W3C validator