MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfintop Structured version   Visualization version   GIF version

Theorem locfintop 21849
Description: A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.)
Assertion
Ref Expression
locfintop (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)

Proof of Theorem locfintop
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2773 . . 3 𝐽 = 𝐽
2 eqid 2773 . . 3 𝐴 = 𝐴
31, 2islocfin 21845 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = 𝐴 ∧ ∀𝑠 𝐽𝑛𝐽 (𝑠𝑛 ∧ {𝑥𝐴 ∣ (𝑥𝑛) ≠ ∅} ∈ Fin)))
43simp1bi 1126 1 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  wne 2962  wral 3083  wrex 3084  {crab 3087  cin 3823  c0 4173   cuni 4709  cfv 6186  Fincfn 8305  Topctop 21221  LocFinclocfin 21832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ral 3088  df-rex 3089  df-rab 3092  df-v 3412  df-sbc 3677  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-op 4443  df-uni 4710  df-br 4927  df-opab 4989  df-mpt 5006  df-id 5309  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-iota 6150  df-fun 6188  df-fv 6194  df-top 21222  df-locfin 21835
This theorem is referenced by:  lfinun  21853  locfinreflem  30781  locfinref  30782
  Copyright terms: Public domain W3C validator