![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > locfintop | Structured version Visualization version GIF version |
Description: A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
locfintop | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2773 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2773 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
3 | 1, 2 | islocfin 21845 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐴 ∧ ∀𝑠 ∈ ∪ 𝐽∃𝑛 ∈ 𝐽 (𝑠 ∈ 𝑛 ∧ {𝑥 ∈ 𝐴 ∣ (𝑥 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
4 | 3 | simp1bi 1126 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ≠ wne 2962 ∀wral 3083 ∃wrex 3084 {crab 3087 ∩ cin 3823 ∅c0 4173 ∪ cuni 4709 ‘cfv 6186 Fincfn 8305 Topctop 21221 LocFinclocfin 21832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fv 6194 df-top 21222 df-locfin 21835 |
This theorem is referenced by: lfinun 21853 locfinreflem 30781 locfinref 30782 |
Copyright terms: Public domain | W3C validator |