![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > locfintop | Structured version Visualization version GIF version |
Description: A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
Ref | Expression |
---|---|
locfintop | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | eqid 2733 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
3 | 1, 2 | islocfin 23003 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐴 ∧ ∀𝑠 ∈ ∪ 𝐽∃𝑛 ∈ 𝐽 (𝑠 ∈ 𝑛 ∧ {𝑥 ∈ 𝐴 ∣ (𝑥 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
4 | 3 | simp1bi 1146 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∀wral 3062 ∃wrex 3071 {crab 3433 ∩ cin 3946 ∅c0 4321 ∪ cuni 4907 ‘cfv 6540 Fincfn 8935 Topctop 22377 LocFinclocfin 22990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fv 6548 df-top 22378 df-locfin 22993 |
This theorem is referenced by: lfinun 23011 locfinreflem 32758 locfinref 32759 |
Copyright terms: Public domain | W3C validator |