MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  locfintop Structured version   Visualization version   GIF version

Theorem locfintop 23434
Description: A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.)
Assertion
Ref Expression
locfintop (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)

Proof of Theorem locfintop
Dummy variables 𝑛 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 𝐽 = 𝐽
2 eqid 2731 . . 3 𝐴 = 𝐴
31, 2islocfin 23430 . 2 (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝐽 = 𝐴 ∧ ∀𝑠 𝐽𝑛𝐽 (𝑠𝑛 ∧ {𝑥𝐴 ∣ (𝑥𝑛) ≠ ∅} ∈ Fin)))
43simp1bi 1145 1 (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cin 3901  c0 4283   cuni 4859  cfv 6481  Fincfn 8869  Topctop 22806  LocFinclocfin 23417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-top 22807  df-locfin 23420
This theorem is referenced by:  lfinun  23438  locfinreflem  33848  locfinref  33849
  Copyright terms: Public domain W3C validator