| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > locfintop | Structured version Visualization version GIF version | ||
| Description: A locally finite cover covers a topological space. (Contributed by Jeff Hankins, 21-Jan-2010.) |
| Ref | Expression |
|---|---|
| locfintop | ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | eqid 2733 | . . 3 ⊢ ∪ 𝐴 = ∪ 𝐴 | |
| 3 | 1, 2 | islocfin 23433 | . 2 ⊢ (𝐴 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ ∪ 𝐽 = ∪ 𝐴 ∧ ∀𝑠 ∈ ∪ 𝐽∃𝑛 ∈ 𝐽 (𝑠 ∈ 𝑛 ∧ {𝑥 ∈ 𝐴 ∣ (𝑥 ∩ 𝑛) ≠ ∅} ∈ Fin))) |
| 4 | 3 | simp1bi 1145 | 1 ⊢ (𝐴 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∀wral 3048 ∃wrex 3057 {crab 3396 ∩ cin 3897 ∅c0 4282 ∪ cuni 4858 ‘cfv 6486 Fincfn 8875 Topctop 22809 LocFinclocfin 23420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-top 22810 df-locfin 23423 |
| This theorem is referenced by: lfinun 23441 locfinreflem 33874 locfinref 33875 |
| Copyright terms: Public domain | W3C validator |