![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lp1cycl | Structured version Visualization version GIF version |
Description: A loop (which is an edge at index 𝐽) induces a cycle of length 1 in a hypergraph. (Contributed by AV, 2-Feb-2021.) (Proof shortened by AV, 30-Oct-2021.) |
Ref | Expression |
---|---|
lppthon.i | ⊢ 𝐼 = (iEdg‘𝐺) |
Ref | Expression |
---|---|
lp1cycl | ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(Cycles‘𝐺)〈“𝐴𝐴”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lppthon.i | . . . 4 ⊢ 𝐼 = (iEdg‘𝐺) | |
2 | 1 | lppthon 27670 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(𝐴(PathsOn‘𝐺)𝐴)〈“𝐴𝐴”〉) |
3 | pthonispth 27225 | . . 3 ⊢ (〈“𝐽”〉(𝐴(PathsOn‘𝐺)𝐴)〈“𝐴𝐴”〉 → 〈“𝐽”〉(Paths‘𝐺)〈“𝐴𝐴”〉) | |
4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(Paths‘𝐺)〈“𝐴𝐴”〉) |
5 | 1 | lpvtx 26546 | . . 3 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 𝐴 ∈ (Vtx‘𝐺)) |
6 | s2fv1 14102 | . . . 4 ⊢ (𝐴 ∈ (Vtx‘𝐺) → (〈“𝐴𝐴”〉‘1) = 𝐴) | |
7 | s1len 13759 | . . . . . 6 ⊢ (♯‘〈“𝐽”〉) = 1 | |
8 | 7 | fveq2i 6496 | . . . . 5 ⊢ (〈“𝐴𝐴”〉‘(♯‘〈“𝐽”〉)) = (〈“𝐴𝐴”〉‘1) |
9 | 8 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ (Vtx‘𝐺) → (〈“𝐴𝐴”〉‘(♯‘〈“𝐽”〉)) = (〈“𝐴𝐴”〉‘1)) |
10 | s2fv0 14101 | . . . 4 ⊢ (𝐴 ∈ (Vtx‘𝐺) → (〈“𝐴𝐴”〉‘0) = 𝐴) | |
11 | 6, 9, 10 | 3eqtr4rd 2819 | . . 3 ⊢ (𝐴 ∈ (Vtx‘𝐺) → (〈“𝐴𝐴”〉‘0) = (〈“𝐴𝐴”〉‘(♯‘〈“𝐽”〉))) |
12 | 5, 11 | syl 17 | . 2 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → (〈“𝐴𝐴”〉‘0) = (〈“𝐴𝐴”〉‘(♯‘〈“𝐽”〉))) |
13 | iscycl 27270 | . 2 ⊢ (〈“𝐽”〉(Cycles‘𝐺)〈“𝐴𝐴”〉 ↔ (〈“𝐽”〉(Paths‘𝐺)〈“𝐴𝐴”〉 ∧ (〈“𝐴𝐴”〉‘0) = (〈“𝐴𝐴”〉‘(♯‘〈“𝐽”〉)))) | |
14 | 4, 12, 13 | sylanbrc 575 | 1 ⊢ ((𝐺 ∈ UHGraph ∧ 𝐽 ∈ dom 𝐼 ∧ (𝐼‘𝐽) = {𝐴}) → 〈“𝐽”〉(Cycles‘𝐺)〈“𝐴𝐴”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 {csn 4435 class class class wbr 4923 dom cdm 5400 ‘cfv 6182 (class class class)co 6970 0cc0 10327 1c1 10328 ♯chash 13498 〈“cs1 13748 〈“cs2 14055 Vtxcvtx 26474 iEdgciedg 26475 UHGraphcuhgr 26534 Pathscpths 27191 PathsOncpthson 27193 Cyclesccycls 27264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-ifp 1044 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-map 8200 df-pm 8201 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-n0 11701 df-z 11787 df-uz 12052 df-fz 12702 df-fzo 12843 df-hash 13499 df-word 13663 df-concat 13724 df-s1 13749 df-s2 14062 df-uhgr 26536 df-wlks 27074 df-wlkson 27075 df-trls 27170 df-trlson 27171 df-pths 27195 df-pthson 27197 df-cycls 27266 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |