MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mapsn Structured version   Visualization version   GIF version

Theorem mapsn 8865
Description: The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.)
Hypotheses
Ref Expression
map0.1 𝐴 ∈ V
map0.2 𝐵 ∈ V
Assertion
Ref Expression
mapsn (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
Distinct variable groups:   𝑦,𝑓,𝐴   𝐵,𝑓,𝑦

Proof of Theorem mapsn
StepHypRef Expression
1 map0.1 . 2 𝐴 ∈ V
2 id 22 . . 3 (𝐴 ∈ V → 𝐴 ∈ V)
3 map0.2 . . . 4 𝐵 ∈ V
43a1i 11 . . 3 (𝐴 ∈ V → 𝐵 ∈ V)
52, 4mapsnd 8863 . 2 (𝐴 ∈ V → (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}})
61, 5ax-mp 5 1 (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2708  wrex 3055  Vcvv 3455  {csn 4597  cop 4603  (class class class)co 7394  m cmap 8803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-map 8805
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator