![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsnen | Structured version Visualization version GIF version |
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
mapsnen.1 | ⊢ 𝐴 ∈ V |
mapsnen.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mapsnen | ⊢ (𝐴 ↑m {𝐵}) ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsnen.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
3 | mapsnen.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 2, 4 | mapsnend 9065 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ↑m {𝐵}) ≈ 𝐴) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ (𝐴 ↑m {𝐵}) ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2098 Vcvv 3471 {csn 4630 class class class wbr 5150 (class class class)co 7424 ↑m cmap 8849 ≈ cen 8965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8851 df-en 8969 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |