![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mapsnen | Structured version Visualization version GIF version |
Description: Set exponentiation to a singleton exponent is equinumerous to its base. Exercise 4.43 of [Mendelson] p. 255. (Contributed by NM, 17-Dec-2003.) (Revised by Mario Carneiro, 15-Nov-2014.) (Proof shortened by AV, 17-Jul-2022.) |
Ref | Expression |
---|---|
mapsnen.1 | ⊢ 𝐴 ∈ V |
mapsnen.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
mapsnen | ⊢ (𝐴 ↑m {𝐵}) ≈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapsnen.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | id 22 | . . 3 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
3 | mapsnen.2 | . . . 4 ⊢ 𝐵 ∈ V | |
4 | 3 | a1i 11 | . . 3 ⊢ (𝐴 ∈ V → 𝐵 ∈ V) |
5 | 2, 4 | mapsnend 8987 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ↑m {𝐵}) ≈ 𝐴) |
6 | 1, 5 | ax-mp 5 | 1 ⊢ (𝐴 ↑m {𝐵}) ≈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 Vcvv 3448 {csn 4591 class class class wbr 5110 (class class class)co 7362 ↑m cmap 8772 ≈ cen 8887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-map 8774 df-en 8891 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |