MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubm Structured version   Visualization version   GIF version

Theorem cntzsubm 19321
Description: Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubm ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))

Proof of Theorem cntzsubm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
2 cntzrec.z . . . 4 𝑍 = (Cntz‘𝑀)
31, 2cntzssv 19311 . . 3 (𝑍𝑆) ⊆ 𝐵
43a1i 11 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
5 eqid 2735 . . . . 5 (0g𝑀) = (0g𝑀)
61, 5mndidcl 18727 . . . 4 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
76adantr 480 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (0g𝑀) ∈ 𝐵)
8 simpll 766 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑀 ∈ Mnd)
9 simpr 484 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → 𝑆𝐵)
109sselda 3958 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
11 eqid 2735 . . . . . . 7 (+g𝑀) = (+g𝑀)
121, 11, 5mndlid 18732 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → ((0g𝑀)(+g𝑀)𝑥) = 𝑥)
138, 10, 12syl2anc 584 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → ((0g𝑀)(+g𝑀)𝑥) = 𝑥)
141, 11, 5mndrid 18733 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀)(0g𝑀)) = 𝑥)
158, 10, 14syl2anc 584 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑥(+g𝑀)(0g𝑀)) = 𝑥)
1613, 15eqtr4d 2773 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))
1716ralrimiva 3132 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))
181, 11, 2elcntz 19305 . . . 4 (𝑆𝐵 → ((0g𝑀) ∈ (𝑍𝑆) ↔ ((0g𝑀) ∈ 𝐵 ∧ ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))))
1918adantl 481 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ((0g𝑀) ∈ (𝑍𝑆) ↔ ((0g𝑀) ∈ 𝐵 ∧ ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))))
207, 17, 19mpbir2and 713 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (0g𝑀) ∈ (𝑍𝑆))
21 simpll 766 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑀 ∈ Mnd)
22 simprl 770 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑦 ∈ (𝑍𝑆))
233, 22sselid 3956 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑦𝐵)
24 simprr 772 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑧 ∈ (𝑍𝑆))
253, 24sselid 3956 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑧𝐵)
261, 11mndcl 18720 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
2721, 23, 25, 26syl3anc 1373 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
2821adantr 480 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑀 ∈ Mnd)
2923adantr 480 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑦𝐵)
3025adantr 480 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑧𝐵)
3110adantlr 715 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑥𝐵)
321, 11mndass 18721 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵𝑥𝐵)) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
3328, 29, 30, 31, 32syl13anc 1374 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
3411, 2cntzi 19312 . . . . . . . . 9 ((𝑧 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
3524, 34sylan 580 . . . . . . . 8 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
3635oveq2d 7421 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
371, 11mndass 18721 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
3828, 29, 31, 30, 37syl13anc 1374 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
3911, 2cntzi 19312 . . . . . . . . 9 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
4022, 39sylan 580 . . . . . . . 8 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
4140oveq1d 7420 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
4236, 38, 413eqtr2d 2776 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
431, 11mndass 18721 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4428, 31, 29, 30, 43syl13anc 1374 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4533, 42, 443eqtrd 2774 . . . . 5 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4645ralrimiva 3132 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
471, 11, 2elcntz 19305 . . . . 5 (𝑆𝐵 → ((𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆) ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4847ad2antlr 727 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → ((𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆) ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4927, 46, 48mpbir2and 713 . . 3 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → (𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))
5049ralrimivva 3187 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))
511, 5, 11issubm 18781 . . 3 (𝑀 ∈ Mnd → ((𝑍𝑆) ∈ (SubMnd‘𝑀) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (0g𝑀) ∈ (𝑍𝑆) ∧ ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))))
5251adantr 480 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubMnd‘𝑀) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (0g𝑀) ∈ (𝑍𝑆) ∧ ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))))
534, 20, 50, 52mpbir3and 1343 1 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wss 3926  cfv 6531  (class class class)co 7405  Basecbs 17228  +gcplusg 17271  0gc0g 17453  Mndcmnd 18712  SubMndcsubmnd 18760  Cntzccntz 19298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-cntz 19300
This theorem is referenced by:  cntzsubg  19322  cntrcmnd  19823  cntzspan  19825  dprdfadd  20003  cntzsubr  20566
  Copyright terms: Public domain W3C validator