Step | Hyp | Ref
| Expression |
1 | | cntzrec.b |
. . . 4
β’ π΅ = (Baseβπ) |
2 | | cntzrec.z |
. . . 4
β’ π = (Cntzβπ) |
3 | 1, 2 | cntzssv 19233 |
. . 3
β’ (πβπ) β π΅ |
4 | 3 | a1i 11 |
. 2
β’ ((π β Mnd β§ π β π΅) β (πβπ) β π΅) |
5 | | eqid 2732 |
. . . . 5
β’
(0gβπ) = (0gβπ) |
6 | 1, 5 | mndidcl 18674 |
. . . 4
β’ (π β Mnd β
(0gβπ)
β π΅) |
7 | 6 | adantr 481 |
. . 3
β’ ((π β Mnd β§ π β π΅) β (0gβπ) β π΅) |
8 | | simpll 765 |
. . . . . 6
β’ (((π β Mnd β§ π β π΅) β§ π₯ β π) β π β Mnd) |
9 | | simpr 485 |
. . . . . . 7
β’ ((π β Mnd β§ π β π΅) β π β π΅) |
10 | 9 | sselda 3982 |
. . . . . 6
β’ (((π β Mnd β§ π β π΅) β§ π₯ β π) β π₯ β π΅) |
11 | | eqid 2732 |
. . . . . . 7
β’
(+gβπ) = (+gβπ) |
12 | 1, 11, 5 | mndlid 18679 |
. . . . . 6
β’ ((π β Mnd β§ π₯ β π΅) β ((0gβπ)(+gβπ)π₯) = π₯) |
13 | 8, 10, 12 | syl2anc 584 |
. . . . 5
β’ (((π β Mnd β§ π β π΅) β§ π₯ β π) β ((0gβπ)(+gβπ)π₯) = π₯) |
14 | 1, 11, 5 | mndrid 18680 |
. . . . . 6
β’ ((π β Mnd β§ π₯ β π΅) β (π₯(+gβπ)(0gβπ)) = π₯) |
15 | 8, 10, 14 | syl2anc 584 |
. . . . 5
β’ (((π β Mnd β§ π β π΅) β§ π₯ β π) β (π₯(+gβπ)(0gβπ)) = π₯) |
16 | 13, 15 | eqtr4d 2775 |
. . . 4
β’ (((π β Mnd β§ π β π΅) β§ π₯ β π) β ((0gβπ)(+gβπ)π₯) = (π₯(+gβπ)(0gβπ))) |
17 | 16 | ralrimiva 3146 |
. . 3
β’ ((π β Mnd β§ π β π΅) β βπ₯ β π ((0gβπ)(+gβπ)π₯) = (π₯(+gβπ)(0gβπ))) |
18 | 1, 11, 2 | elcntz 19227 |
. . . 4
β’ (π β π΅ β ((0gβπ) β (πβπ) β ((0gβπ) β π΅ β§ βπ₯ β π ((0gβπ)(+gβπ)π₯) = (π₯(+gβπ)(0gβπ))))) |
19 | 18 | adantl 482 |
. . 3
β’ ((π β Mnd β§ π β π΅) β ((0gβπ) β (πβπ) β ((0gβπ) β π΅ β§ βπ₯ β π ((0gβπ)(+gβπ)π₯) = (π₯(+gβπ)(0gβπ))))) |
20 | 7, 17, 19 | mpbir2and 711 |
. 2
β’ ((π β Mnd β§ π β π΅) β (0gβπ) β (πβπ)) |
21 | | simpll 765 |
. . . . 5
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β π β Mnd) |
22 | | simprl 769 |
. . . . . 6
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β π¦ β (πβπ)) |
23 | 3, 22 | sselid 3980 |
. . . . 5
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β π¦ β π΅) |
24 | | simprr 771 |
. . . . . 6
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β π§ β (πβπ)) |
25 | 3, 24 | sselid 3980 |
. . . . 5
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β π§ β π΅) |
26 | 1, 11 | mndcl 18667 |
. . . . 5
β’ ((π β Mnd β§ π¦ β π΅ β§ π§ β π΅) β (π¦(+gβπ)π§) β π΅) |
27 | 21, 23, 25, 26 | syl3anc 1371 |
. . . 4
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β (π¦(+gβπ)π§) β π΅) |
28 | 21 | adantr 481 |
. . . . . . 7
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β π β Mnd) |
29 | 23 | adantr 481 |
. . . . . . 7
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β π¦ β π΅) |
30 | 25 | adantr 481 |
. . . . . . 7
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β π§ β π΅) |
31 | 10 | adantlr 713 |
. . . . . . 7
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β π₯ β π΅) |
32 | 1, 11 | mndass 18668 |
. . . . . . 7
β’ ((π β Mnd β§ (π¦ β π΅ β§ π§ β π΅ β§ π₯ β π΅)) β ((π¦(+gβπ)π§)(+gβπ)π₯) = (π¦(+gβπ)(π§(+gβπ)π₯))) |
33 | 28, 29, 30, 31, 32 | syl13anc 1372 |
. . . . . 6
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β ((π¦(+gβπ)π§)(+gβπ)π₯) = (π¦(+gβπ)(π§(+gβπ)π₯))) |
34 | 11, 2 | cntzi 19234 |
. . . . . . . . 9
β’ ((π§ β (πβπ) β§ π₯ β π) β (π§(+gβπ)π₯) = (π₯(+gβπ)π§)) |
35 | 24, 34 | sylan 580 |
. . . . . . . 8
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β (π§(+gβπ)π₯) = (π₯(+gβπ)π§)) |
36 | 35 | oveq2d 7427 |
. . . . . . 7
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β (π¦(+gβπ)(π§(+gβπ)π₯)) = (π¦(+gβπ)(π₯(+gβπ)π§))) |
37 | 1, 11 | mndass 18668 |
. . . . . . . 8
β’ ((π β Mnd β§ (π¦ β π΅ β§ π₯ β π΅ β§ π§ β π΅)) β ((π¦(+gβπ)π₯)(+gβπ)π§) = (π¦(+gβπ)(π₯(+gβπ)π§))) |
38 | 28, 29, 31, 30, 37 | syl13anc 1372 |
. . . . . . 7
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β ((π¦(+gβπ)π₯)(+gβπ)π§) = (π¦(+gβπ)(π₯(+gβπ)π§))) |
39 | 11, 2 | cntzi 19234 |
. . . . . . . . 9
β’ ((π¦ β (πβπ) β§ π₯ β π) β (π¦(+gβπ)π₯) = (π₯(+gβπ)π¦)) |
40 | 22, 39 | sylan 580 |
. . . . . . . 8
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β (π¦(+gβπ)π₯) = (π₯(+gβπ)π¦)) |
41 | 40 | oveq1d 7426 |
. . . . . . 7
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β ((π¦(+gβπ)π₯)(+gβπ)π§) = ((π₯(+gβπ)π¦)(+gβπ)π§)) |
42 | 36, 38, 41 | 3eqtr2d 2778 |
. . . . . 6
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β (π¦(+gβπ)(π§(+gβπ)π₯)) = ((π₯(+gβπ)π¦)(+gβπ)π§)) |
43 | 1, 11 | mndass 18668 |
. . . . . . 7
β’ ((π β Mnd β§ (π₯ β π΅ β§ π¦ β π΅ β§ π§ β π΅)) β ((π₯(+gβπ)π¦)(+gβπ)π§) = (π₯(+gβπ)(π¦(+gβπ)π§))) |
44 | 28, 31, 29, 30, 43 | syl13anc 1372 |
. . . . . 6
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β ((π₯(+gβπ)π¦)(+gβπ)π§) = (π₯(+gβπ)(π¦(+gβπ)π§))) |
45 | 33, 42, 44 | 3eqtrd 2776 |
. . . . 5
β’ ((((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β§ π₯ β π) β ((π¦(+gβπ)π§)(+gβπ)π₯) = (π₯(+gβπ)(π¦(+gβπ)π§))) |
46 | 45 | ralrimiva 3146 |
. . . 4
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β βπ₯ β π ((π¦(+gβπ)π§)(+gβπ)π₯) = (π₯(+gβπ)(π¦(+gβπ)π§))) |
47 | 1, 11, 2 | elcntz 19227 |
. . . . 5
β’ (π β π΅ β ((π¦(+gβπ)π§) β (πβπ) β ((π¦(+gβπ)π§) β π΅ β§ βπ₯ β π ((π¦(+gβπ)π§)(+gβπ)π₯) = (π₯(+gβπ)(π¦(+gβπ)π§))))) |
48 | 47 | ad2antlr 725 |
. . . 4
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β ((π¦(+gβπ)π§) β (πβπ) β ((π¦(+gβπ)π§) β π΅ β§ βπ₯ β π ((π¦(+gβπ)π§)(+gβπ)π₯) = (π₯(+gβπ)(π¦(+gβπ)π§))))) |
49 | 27, 46, 48 | mpbir2and 711 |
. . 3
β’ (((π β Mnd β§ π β π΅) β§ (π¦ β (πβπ) β§ π§ β (πβπ))) β (π¦(+gβπ)π§) β (πβπ)) |
50 | 49 | ralrimivva 3200 |
. 2
β’ ((π β Mnd β§ π β π΅) β βπ¦ β (πβπ)βπ§ β (πβπ)(π¦(+gβπ)π§) β (πβπ)) |
51 | 1, 5, 11 | issubm 18720 |
. . 3
β’ (π β Mnd β ((πβπ) β (SubMndβπ) β ((πβπ) β π΅ β§ (0gβπ) β (πβπ) β§ βπ¦ β (πβπ)βπ§ β (πβπ)(π¦(+gβπ)π§) β (πβπ)))) |
52 | 51 | adantr 481 |
. 2
β’ ((π β Mnd β§ π β π΅) β ((πβπ) β (SubMndβπ) β ((πβπ) β π΅ β§ (0gβπ) β (πβπ) β§ βπ¦ β (πβπ)βπ§ β (πβπ)(π¦(+gβπ)π§) β (πβπ)))) |
53 | 4, 20, 50, 52 | mpbir3and 1342 |
1
β’ ((π β Mnd β§ π β π΅) β (πβπ) β (SubMndβπ)) |