Step | Hyp | Ref
| Expression |
1 | | cntzrec.b |
. . . 4
⊢ 𝐵 = (Base‘𝑀) |
2 | | cntzrec.z |
. . . 4
⊢ 𝑍 = (Cntz‘𝑀) |
3 | 1, 2 | cntzssv 19240 |
. . 3
⊢ (𝑍‘𝑆) ⊆ 𝐵 |
4 | 3 | a1i 11 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ⊆ 𝐵) |
5 | | eqid 2731 |
. . . . 5
⊢
(0g‘𝑀) = (0g‘𝑀) |
6 | 1, 5 | mndidcl 18680 |
. . . 4
⊢ (𝑀 ∈ Mnd →
(0g‘𝑀)
∈ 𝐵) |
7 | 6 | adantr 480 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (0g‘𝑀) ∈ 𝐵) |
8 | | simpll 764 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝑀 ∈ Mnd) |
9 | | simpr 484 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → 𝑆 ⊆ 𝐵) |
10 | 9 | sselda 3982 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
11 | | eqid 2731 |
. . . . . . 7
⊢
(+g‘𝑀) = (+g‘𝑀) |
12 | 1, 11, 5 | mndlid 18685 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ((0g‘𝑀)(+g‘𝑀)𝑥) = 𝑥) |
13 | 8, 10, 12 | syl2anc 583 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → ((0g‘𝑀)(+g‘𝑀)𝑥) = 𝑥) |
14 | 1, 11, 5 | mndrid 18686 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀)(0g‘𝑀)) = 𝑥) |
15 | 8, 10, 14 | syl2anc 583 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → (𝑥(+g‘𝑀)(0g‘𝑀)) = 𝑥) |
16 | 13, 15 | eqtr4d 2774 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ 𝑥 ∈ 𝑆) → ((0g‘𝑀)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(0g‘𝑀))) |
17 | 16 | ralrimiva 3145 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → ∀𝑥 ∈ 𝑆 ((0g‘𝑀)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(0g‘𝑀))) |
18 | 1, 11, 2 | elcntz 19234 |
. . . 4
⊢ (𝑆 ⊆ 𝐵 → ((0g‘𝑀) ∈ (𝑍‘𝑆) ↔ ((0g‘𝑀) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ((0g‘𝑀)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(0g‘𝑀))))) |
19 | 18 | adantl 481 |
. . 3
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → ((0g‘𝑀) ∈ (𝑍‘𝑆) ↔ ((0g‘𝑀) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ((0g‘𝑀)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(0g‘𝑀))))) |
20 | 7, 17, 19 | mpbir2and 710 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (0g‘𝑀) ∈ (𝑍‘𝑆)) |
21 | | simpll 764 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → 𝑀 ∈ Mnd) |
22 | | simprl 768 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → 𝑦 ∈ (𝑍‘𝑆)) |
23 | 3, 22 | sselid 3980 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → 𝑦 ∈ 𝐵) |
24 | | simprr 770 |
. . . . . 6
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → 𝑧 ∈ (𝑍‘𝑆)) |
25 | 3, 24 | sselid 3980 |
. . . . 5
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → 𝑧 ∈ 𝐵) |
26 | 1, 11 | mndcl 18673 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵) → (𝑦(+g‘𝑀)𝑧) ∈ 𝐵) |
27 | 21, 23, 25, 26 | syl3anc 1370 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → (𝑦(+g‘𝑀)𝑧) ∈ 𝐵) |
28 | 21 | adantr 480 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → 𝑀 ∈ Mnd) |
29 | 23 | adantr 480 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → 𝑦 ∈ 𝐵) |
30 | 25 | adantr 480 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → 𝑧 ∈ 𝐵) |
31 | 10 | adantlr 712 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → 𝑥 ∈ 𝐵) |
32 | 1, 11 | mndass 18674 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵)) → ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑦(+g‘𝑀)(𝑧(+g‘𝑀)𝑥))) |
33 | 28, 29, 30, 31, 32 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑦(+g‘𝑀)(𝑧(+g‘𝑀)𝑥))) |
34 | 11, 2 | cntzi 19241 |
. . . . . . . . 9
⊢ ((𝑧 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑧(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑧)) |
35 | 24, 34 | sylan 579 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → (𝑧(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑧)) |
36 | 35 | oveq2d 7428 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)(𝑧(+g‘𝑀)𝑥)) = (𝑦(+g‘𝑀)(𝑥(+g‘𝑀)𝑧))) |
37 | 1, 11 | mndass 18674 |
. . . . . . . 8
⊢ ((𝑀 ∈ Mnd ∧ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)𝑧) = (𝑦(+g‘𝑀)(𝑥(+g‘𝑀)𝑧))) |
38 | 28, 29, 31, 30, 37 | syl13anc 1371 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)𝑧) = (𝑦(+g‘𝑀)(𝑥(+g‘𝑀)𝑧))) |
39 | 11, 2 | cntzi 19241 |
. . . . . . . . 9
⊢ ((𝑦 ∈ (𝑍‘𝑆) ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
40 | 22, 39 | sylan 579 |
. . . . . . . 8
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)𝑦)) |
41 | 40 | oveq1d 7427 |
. . . . . . 7
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → ((𝑦(+g‘𝑀)𝑥)(+g‘𝑀)𝑧) = ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧)) |
42 | 36, 38, 41 | 3eqtr2d 2777 |
. . . . . 6
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → (𝑦(+g‘𝑀)(𝑧(+g‘𝑀)𝑥)) = ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧)) |
43 | 1, 11 | mndass 18674 |
. . . . . . 7
⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
44 | 28, 31, 29, 30, 43 | syl13anc 1371 |
. . . . . 6
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → ((𝑥(+g‘𝑀)𝑦)(+g‘𝑀)𝑧) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
45 | 33, 42, 44 | 3eqtrd 2775 |
. . . . 5
⊢ ((((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) ∧ 𝑥 ∈ 𝑆) → ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
46 | 45 | ralrimiva 3145 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → ∀𝑥 ∈ 𝑆 ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))) |
47 | 1, 11, 2 | elcntz 19234 |
. . . . 5
⊢ (𝑆 ⊆ 𝐵 → ((𝑦(+g‘𝑀)𝑧) ∈ (𝑍‘𝑆) ↔ ((𝑦(+g‘𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))))) |
48 | 47 | ad2antlr 724 |
. . . 4
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → ((𝑦(+g‘𝑀)𝑧) ∈ (𝑍‘𝑆) ↔ ((𝑦(+g‘𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 ((𝑦(+g‘𝑀)𝑧)(+g‘𝑀)𝑥) = (𝑥(+g‘𝑀)(𝑦(+g‘𝑀)𝑧))))) |
49 | 27, 46, 48 | mpbir2and 710 |
. . 3
⊢ (((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) ∧ (𝑦 ∈ (𝑍‘𝑆) ∧ 𝑧 ∈ (𝑍‘𝑆))) → (𝑦(+g‘𝑀)𝑧) ∈ (𝑍‘𝑆)) |
50 | 49 | ralrimivva 3199 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → ∀𝑦 ∈ (𝑍‘𝑆)∀𝑧 ∈ (𝑍‘𝑆)(𝑦(+g‘𝑀)𝑧) ∈ (𝑍‘𝑆)) |
51 | 1, 5, 11 | issubm 18726 |
. . 3
⊢ (𝑀 ∈ Mnd → ((𝑍‘𝑆) ∈ (SubMnd‘𝑀) ↔ ((𝑍‘𝑆) ⊆ 𝐵 ∧ (0g‘𝑀) ∈ (𝑍‘𝑆) ∧ ∀𝑦 ∈ (𝑍‘𝑆)∀𝑧 ∈ (𝑍‘𝑆)(𝑦(+g‘𝑀)𝑧) ∈ (𝑍‘𝑆)))) |
52 | 51 | adantr 480 |
. 2
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → ((𝑍‘𝑆) ∈ (SubMnd‘𝑀) ↔ ((𝑍‘𝑆) ⊆ 𝐵 ∧ (0g‘𝑀) ∈ (𝑍‘𝑆) ∧ ∀𝑦 ∈ (𝑍‘𝑆)∀𝑧 ∈ (𝑍‘𝑆)(𝑦(+g‘𝑀)𝑧) ∈ (𝑍‘𝑆)))) |
53 | 4, 20, 50, 52 | mpbir3and 1341 |
1
⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) |