MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntzsubm Structured version   Visualization version   GIF version

Theorem cntzsubm 18458
Description: Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
Hypotheses
Ref Expression
cntzrec.b 𝐵 = (Base‘𝑀)
cntzrec.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntzsubm ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))

Proof of Theorem cntzsubm
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cntzrec.b . . . 4 𝐵 = (Base‘𝑀)
2 cntzrec.z . . . 4 𝑍 = (Cntz‘𝑀)
31, 2cntzssv 18450 . . 3 (𝑍𝑆) ⊆ 𝐵
43a1i 11 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ⊆ 𝐵)
5 eqid 2798 . . . . 5 (0g𝑀) = (0g𝑀)
61, 5mndidcl 17918 . . . 4 (𝑀 ∈ Mnd → (0g𝑀) ∈ 𝐵)
76adantr 484 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (0g𝑀) ∈ 𝐵)
8 simpll 766 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑀 ∈ Mnd)
9 simpr 488 . . . . . . 7 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → 𝑆𝐵)
109sselda 3915 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → 𝑥𝐵)
11 eqid 2798 . . . . . . 7 (+g𝑀) = (+g𝑀)
121, 11, 5mndlid 17923 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → ((0g𝑀)(+g𝑀)𝑥) = 𝑥)
138, 10, 12syl2anc 587 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → ((0g𝑀)(+g𝑀)𝑥) = 𝑥)
141, 11, 5mndrid 17924 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀)(0g𝑀)) = 𝑥)
158, 10, 14syl2anc 587 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → (𝑥(+g𝑀)(0g𝑀)) = 𝑥)
1613, 15eqtr4d 2836 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ 𝑥𝑆) → ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))
1716ralrimiva 3149 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))
181, 11, 2elcntz 18444 . . . 4 (𝑆𝐵 → ((0g𝑀) ∈ (𝑍𝑆) ↔ ((0g𝑀) ∈ 𝐵 ∧ ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))))
1918adantl 485 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ((0g𝑀) ∈ (𝑍𝑆) ↔ ((0g𝑀) ∈ 𝐵 ∧ ∀𝑥𝑆 ((0g𝑀)(+g𝑀)𝑥) = (𝑥(+g𝑀)(0g𝑀)))))
207, 17, 19mpbir2and 712 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (0g𝑀) ∈ (𝑍𝑆))
21 simpll 766 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑀 ∈ Mnd)
22 simprl 770 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑦 ∈ (𝑍𝑆))
233, 22sseldi 3913 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑦𝐵)
24 simprr 772 . . . . . 6 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑧 ∈ (𝑍𝑆))
253, 24sseldi 3913 . . . . 5 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → 𝑧𝐵)
261, 11mndcl 17911 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑦𝐵𝑧𝐵) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
2721, 23, 25, 26syl3anc 1368 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → (𝑦(+g𝑀)𝑧) ∈ 𝐵)
2821adantr 484 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑀 ∈ Mnd)
2923adantr 484 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑦𝐵)
3025adantr 484 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑧𝐵)
3110adantlr 714 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → 𝑥𝐵)
321, 11mndass 17912 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑦𝐵𝑧𝐵𝑥𝐵)) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
3328, 29, 30, 31, 32syl13anc 1369 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)))
3411, 2cntzi 18451 . . . . . . . . 9 ((𝑧 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
3524, 34sylan 583 . . . . . . . 8 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑧(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑧))
3635oveq2d 7151 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
371, 11mndass 17912 . . . . . . . 8 ((𝑀 ∈ Mnd ∧ (𝑦𝐵𝑥𝐵𝑧𝐵)) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
3828, 29, 31, 30, 37syl13anc 1369 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = (𝑦(+g𝑀)(𝑥(+g𝑀)𝑧)))
3911, 2cntzi 18451 . . . . . . . . 9 ((𝑦 ∈ (𝑍𝑆) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
4022, 39sylan 583 . . . . . . . 8 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)𝑥) = (𝑥(+g𝑀)𝑦))
4140oveq1d 7150 . . . . . . 7 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑥)(+g𝑀)𝑧) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
4236, 38, 413eqtr2d 2839 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → (𝑦(+g𝑀)(𝑧(+g𝑀)𝑥)) = ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧))
431, 11mndass 17912 . . . . . . 7 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4428, 31, 29, 30, 43syl13anc 1369 . . . . . 6 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑥(+g𝑀)𝑦)(+g𝑀)𝑧) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4533, 42, 443eqtrd 2837 . . . . 5 ((((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) ∧ 𝑥𝑆) → ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
4645ralrimiva 3149 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))
471, 11, 2elcntz 18444 . . . . 5 (𝑆𝐵 → ((𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆) ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4847ad2antlr 726 . . . 4 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → ((𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆) ↔ ((𝑦(+g𝑀)𝑧) ∈ 𝐵 ∧ ∀𝑥𝑆 ((𝑦(+g𝑀)𝑧)(+g𝑀)𝑥) = (𝑥(+g𝑀)(𝑦(+g𝑀)𝑧)))))
4927, 46, 48mpbir2and 712 . . 3 (((𝑀 ∈ Mnd ∧ 𝑆𝐵) ∧ (𝑦 ∈ (𝑍𝑆) ∧ 𝑧 ∈ (𝑍𝑆))) → (𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))
5049ralrimivva 3156 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))
511, 5, 11issubm 17960 . . 3 (𝑀 ∈ Mnd → ((𝑍𝑆) ∈ (SubMnd‘𝑀) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (0g𝑀) ∈ (𝑍𝑆) ∧ ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))))
5251adantr 484 . 2 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → ((𝑍𝑆) ∈ (SubMnd‘𝑀) ↔ ((𝑍𝑆) ⊆ 𝐵 ∧ (0g𝑀) ∈ (𝑍𝑆) ∧ ∀𝑦 ∈ (𝑍𝑆)∀𝑧 ∈ (𝑍𝑆)(𝑦(+g𝑀)𝑧) ∈ (𝑍𝑆))))
534, 20, 50, 52mpbir3and 1339 1 ((𝑀 ∈ Mnd ∧ 𝑆𝐵) → (𝑍𝑆) ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wss 3881  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Mndcmnd 17903  SubMndcsubmnd 17947  Cntzccntz 18437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-cntz 18439
This theorem is referenced by:  cntzsubg  18459  cntrcmnd  18955  cntzspan  18957  dprdfadd  19135  cntzsubr  19561
  Copyright terms: Public domain W3C validator