MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringass Structured version   Visualization version   GIF version

Theorem ringass 20173
Description: Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
ringass ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))

Proof of Theorem ringass
StepHypRef Expression
1 eqid 2729 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 20159 . 2 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3 ringcl.b . . . 4 𝐵 = (Base‘𝑅)
41, 3mgpbas 20065 . . 3 𝐵 = (Base‘(mulGrp‘𝑅))
5 ringcl.t . . . 4 · = (.r𝑅)
61, 5mgpplusg 20064 . . 3 · = (+g‘(mulGrp‘𝑅))
74, 6mndass 18652 . 2 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
82, 7sylan 580 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  Mndcmnd 18643  mulGrpcmgp 20060  Ringcrg 20153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-sgrp 18628  df-mnd 18644  df-mgp 20061  df-ring 20155
This theorem is referenced by:  ringassd  20177  ringinvnzdiv  20221  ringmneg1  20224  ringmneg2  20225  imasring  20250  dvdsrtr  20288  dvdsrmul1  20289  unitgrp  20303  dvrass  20328  dvrcan1  20329  rdivmuldivd  20333  subrginv  20508  issubrg2  20512  unitrrg  20623  drngmul0orOLD  20681  isdrngd  20685  isdrngdOLD  20687  ornglmullt  20789  sralmod  21126  frlmphl  21723  sraassaOLD  21812  psrlmod  21902  psrass1  21906  psrass23l  21909  psrass23  21911  mamuass  22322  mamuvs1  22325  mavmulass  22469  mdetrsca  22523  chfacfpmmulgsum2  22785  nrginvrcnlem  24612  ply1divex  26075  dvrcan5  33203  mxidlprm  33434  fedgmullem1  33618  fedgmullem2  33619  mdetpmtr1  33806  mdetpmtr12  33808  mdetlap  33815  matunitlindflem1  37603  lflvscl  39063  lflvsass  39067  eqlkr3  39087  lkrlsp  39088  lcfl7lem  41486  lclkrlem2m  41506  lcfrlem1  41529  hgmapvvlem1  41910
  Copyright terms: Public domain W3C validator