MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ringass Structured version   Visualization version   GIF version

Theorem ringass 20138
Description: Associative law for multiplication in a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ringcl.b 𝐵 = (Base‘𝑅)
ringcl.t · = (.r𝑅)
Assertion
Ref Expression
ringass ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))

Proof of Theorem ringass
StepHypRef Expression
1 eqid 2729 . . 3 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 20124 . 2 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
3 ringcl.b . . . 4 𝐵 = (Base‘𝑅)
41, 3mgpbas 20030 . . 3 𝐵 = (Base‘(mulGrp‘𝑅))
5 ringcl.t . . . 4 · = (.r𝑅)
61, 5mgpplusg 20029 . . 3 · = (+g‘(mulGrp‘𝑅))
74, 6mndass 18617 . 2 (((mulGrp‘𝑅) ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
82, 7sylan 580 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 · 𝑌) · 𝑍) = (𝑋 · (𝑌 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  Basecbs 17120  .rcmulr 17162  Mndcmnd 18608  mulGrpcmgp 20025  Ringcrg 20118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-sgrp 18593  df-mnd 18609  df-mgp 20026  df-ring 20120
This theorem is referenced by:  ringassd  20142  ringinvnzdiv  20186  ringmneg1  20189  ringmneg2  20190  imasring  20215  dvdsrtr  20253  dvdsrmul1  20254  unitgrp  20268  dvrass  20293  dvrcan1  20294  rdivmuldivd  20298  subrginv  20473  issubrg2  20477  unitrrg  20588  drngmul0orOLD  20646  isdrngd  20650  isdrngdOLD  20652  ornglmullt  20754  sralmod  21091  frlmphl  21688  sraassaOLD  21777  psrlmod  21867  psrass1  21871  psrass23l  21874  psrass23  21876  mamuass  22287  mamuvs1  22290  mavmulass  22434  mdetrsca  22488  chfacfpmmulgsum2  22750  nrginvrcnlem  24577  ply1divex  26040  dvrcan5  33176  mxidlprm  33407  fedgmullem1  33596  fedgmullem2  33597  mdetpmtr1  33790  mdetpmtr12  33792  mdetlap  33799  matunitlindflem1  37600  lflvscl  39060  lflvsass  39064  eqlkr3  39084  lkrlsp  39085  lcfl7lem  41482  lclkrlem2m  41502  lcfrlem1  41525  hgmapvvlem1  41906
  Copyright terms: Public domain W3C validator