MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasmnd Structured version   Visualization version   GIF version

Theorem imasmnd 18698
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasmnd.u (𝜑𝑈 = (𝐹s 𝑅))
imasmnd.v (𝜑𝑉 = (Base‘𝑅))
imasmnd.p + = (+g𝑅)
imasmnd.f (𝜑𝐹:𝑉onto𝐵)
imasmnd.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmnd.r (𝜑𝑅 ∈ Mnd)
imasmnd.z 0 = (0g𝑅)
Assertion
Ref Expression
imasmnd (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝, +   𝑎,𝑏,𝑝,𝑞,𝜑   𝑈,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞   𝐵,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmnd.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasmnd.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasmnd.p . 2 + = (+g𝑅)
4 imasmnd.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasmnd.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasmnd.r . 2 (𝜑𝑅 ∈ Mnd)
763ad2ant1 1132 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Mnd)
8 simp2 1136 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1132 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2834 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1137 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2834 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1413, 3mndcl 18668 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
157, 10, 12, 14syl3anc 1370 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
1615, 9eleqtrrd 2835 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
176adantr 480 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Mnd)
18103adant3r3 1183 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
19123adant3r3 1183 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
20 simpr3 1195 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
212adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2220, 21eleqtrd 2834 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2313, 3mndass 18669 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2417, 18, 19, 22, 23syl13anc 1371 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2524fveq2d 6895 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
26 imasmnd.z . . . . 5 0 = (0g𝑅)
2713, 26mndidcl 18675 . . . 4 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
286, 27syl 17 . . 3 (𝜑0 ∈ (Base‘𝑅))
2928, 2eleqtrrd 2835 . 2 (𝜑0𝑉)
302eleq2d 2818 . . . . 5 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
3130biimpa 476 . . . 4 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
3213, 3, 26mndlid 18680 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 + 𝑥) = 𝑥)
336, 31, 32syl2an2r 682 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
3433fveq2d 6895 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
3513, 3, 26mndrid 18681 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 + 0 ) = 𝑥)
366, 31, 35syl2an2r 682 . . 3 ((𝜑𝑥𝑉) → (𝑥 + 0 ) = 𝑥)
3736fveq2d 6895 . 2 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹𝑥))
381, 2, 3, 4, 5, 6, 16, 25, 29, 34, 37imasmnd2 18697 1 (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2105  ontowfo 6541  cfv 6543  (class class class)co 7412  Basecbs 17149  +gcplusg 17202  0gc0g 17390  s cimas 17455  Mndcmnd 18660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-fin 8946  df-sup 9440  df-inf 9441  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-nn 12218  df-2 12280  df-3 12281  df-4 12282  df-5 12283  df-6 12284  df-7 12285  df-8 12286  df-9 12287  df-n0 12478  df-z 12564  df-dec 12683  df-uz 12828  df-fz 13490  df-struct 17085  df-slot 17120  df-ndx 17132  df-base 17150  df-plusg 17215  df-mulr 17216  df-sca 17218  df-vsca 17219  df-ip 17220  df-tset 17221  df-ple 17222  df-ds 17224  df-0g 17392  df-imas 17459  df-mgm 18566  df-sgrp 18645  df-mnd 18661
This theorem is referenced by:  imasmndf1  18699  imasmhm  32740  r1pquslmic  32957
  Copyright terms: Public domain W3C validator