MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasmnd Structured version   Visualization version   GIF version

Theorem imasmnd 17944
Description: The image structure of a monoid is a monoid. (Contributed by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
imasmnd.u (𝜑𝑈 = (𝐹s 𝑅))
imasmnd.v (𝜑𝑉 = (Base‘𝑅))
imasmnd.p + = (+g𝑅)
imasmnd.f (𝜑𝐹:𝑉onto𝐵)
imasmnd.e ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
imasmnd.r (𝜑𝑅 ∈ Mnd)
imasmnd.z 0 = (0g𝑅)
Assertion
Ref Expression
imasmnd (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Distinct variable groups:   𝑞,𝑝, +   𝑎,𝑏,𝑝,𝑞,𝜑   𝑈,𝑎,𝑏,𝑝,𝑞   0 ,𝑝,𝑞   𝐵,𝑝,𝑞   𝐹,𝑎,𝑏,𝑝,𝑞   𝑅,𝑝,𝑞   𝑉,𝑎,𝑏,𝑝,𝑞
Allowed substitution hints:   𝐵(𝑎,𝑏)   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   0 (𝑎,𝑏)

Proof of Theorem imasmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imasmnd.u . 2 (𝜑𝑈 = (𝐹s 𝑅))
2 imasmnd.v . 2 (𝜑𝑉 = (Base‘𝑅))
3 imasmnd.p . 2 + = (+g𝑅)
4 imasmnd.f . 2 (𝜑𝐹:𝑉onto𝐵)
5 imasmnd.e . 2 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → (((𝐹𝑎) = (𝐹𝑝) ∧ (𝐹𝑏) = (𝐹𝑞)) → (𝐹‘(𝑎 + 𝑏)) = (𝐹‘(𝑝 + 𝑞))))
6 imasmnd.r . 2 (𝜑𝑅 ∈ Mnd)
763ad2ant1 1128 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑅 ∈ Mnd)
8 simp2 1132 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥𝑉)
923ad2ant1 1128 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑉 = (Base‘𝑅))
108, 9eleqtrd 2914 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑥 ∈ (Base‘𝑅))
11 simp3 1133 . . . . 5 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦𝑉)
1211, 9eleqtrd 2914 . . . 4 ((𝜑𝑥𝑉𝑦𝑉) → 𝑦 ∈ (Base‘𝑅))
13 eqid 2820 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
1413, 3mndcl 17914 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
157, 10, 12, 14syl3anc 1366 . . 3 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
1615, 9eleqtrrd 2915 . 2 ((𝜑𝑥𝑉𝑦𝑉) → (𝑥 + 𝑦) ∈ 𝑉)
176adantr 483 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑅 ∈ Mnd)
18103adant3r3 1179 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑥 ∈ (Base‘𝑅))
19123adant3r3 1179 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑦 ∈ (Base‘𝑅))
20 simpr3 1191 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧𝑉)
212adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑉 = (Base‘𝑅))
2220, 21eleqtrd 2914 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → 𝑧 ∈ (Base‘𝑅))
2313, 3mndass 17915 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2417, 18, 19, 22, 23syl13anc 1367 . . 3 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
2524fveq2d 6667 . 2 ((𝜑 ∧ (𝑥𝑉𝑦𝑉𝑧𝑉)) → (𝐹‘((𝑥 + 𝑦) + 𝑧)) = (𝐹‘(𝑥 + (𝑦 + 𝑧))))
26 imasmnd.z . . . . 5 0 = (0g𝑅)
2713, 26mndidcl 17921 . . . 4 (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅))
286, 27syl 17 . . 3 (𝜑0 ∈ (Base‘𝑅))
2928, 2eleqtrrd 2915 . 2 (𝜑0𝑉)
302eleq2d 2897 . . . . 5 (𝜑 → (𝑥𝑉𝑥 ∈ (Base‘𝑅)))
3130biimpa 479 . . . 4 ((𝜑𝑥𝑉) → 𝑥 ∈ (Base‘𝑅))
3213, 3, 26mndlid 17926 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ( 0 + 𝑥) = 𝑥)
336, 31, 32syl2an2r 683 . . 3 ((𝜑𝑥𝑉) → ( 0 + 𝑥) = 𝑥)
3433fveq2d 6667 . 2 ((𝜑𝑥𝑉) → (𝐹‘( 0 + 𝑥)) = (𝐹𝑥))
3513, 3, 26mndrid 17927 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 + 0 ) = 𝑥)
366, 31, 35syl2an2r 683 . . 3 ((𝜑𝑥𝑉) → (𝑥 + 0 ) = 𝑥)
3736fveq2d 6667 . 2 ((𝜑𝑥𝑉) → (𝐹‘(𝑥 + 0 )) = (𝐹𝑥))
381, 2, 3, 4, 5, 6, 16, 25, 29, 34, 37imasmnd2 17943 1 (𝜑 → (𝑈 ∈ Mnd ∧ (𝐹0 ) = (0g𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  ontowfo 6346  cfv 6348  (class class class)co 7149  Basecbs 16478  +gcplusg 16560  0gc0g 16708  s cimas 16772  Mndcmnd 17906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rmo 3145  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-sup 8899  df-inf 8900  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12890  df-struct 16480  df-ndx 16481  df-slot 16482  df-base 16484  df-plusg 16573  df-mulr 16574  df-sca 16576  df-vsca 16577  df-ip 16578  df-tset 16579  df-ple 16580  df-ds 16582  df-0g 16710  df-imas 16776  df-mgm 17847  df-sgrp 17896  df-mnd 17907
This theorem is referenced by:  imasmndf1  17945
  Copyright terms: Public domain W3C validator