MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgmnd Structured version   Visualization version   GIF version

Theorem oppgmnd 18243
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypothesis
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppgmnd (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)

Proof of Theorem oppgmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppgbas.1 . . . 4 𝑂 = (oppg𝑅)
2 eqid 2772 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2oppgbas 18240 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂))
5 eqidd 2773 . 2 (𝑅 ∈ Mnd → (+g𝑂) = (+g𝑂))
6 eqid 2772 . . . 4 (+g𝑅) = (+g𝑅)
7 eqid 2772 . . . 4 (+g𝑂) = (+g𝑂)
86, 1, 7oppgplus 18238 . . 3 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑅)𝑥)
92, 6mndcl 17759 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
1093com23 1106 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
118, 10syl5eqel 2864 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)𝑦) ∈ (Base‘𝑅))
12 simpl 475 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd)
13 simpr3 1176 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
14 simpr2 1175 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
15 simpr1 1174 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
162, 6mndass 17760 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1712, 13, 14, 15, 16syl13anc 1352 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1817eqcomd 2778 . . 3 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥))
198oveq1i 6980 . . . 4 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧)
206, 1, 7oppgplus 18238 . . . 4 ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
2119, 20eqtri 2796 . . 3 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
226, 1, 7oppgplus 18238 . . . . 5 (𝑦(+g𝑂)𝑧) = (𝑧(+g𝑅)𝑦)
2322oveq2i 6981 . . . 4 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦))
246, 1, 7oppgplus 18238 . . . 4 (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2523, 24eqtri 2796 . . 3 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2618, 21, 253eqtr4g 2833 . 2 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)))
27 eqid 2772 . . 3 (0g𝑅) = (0g𝑅)
282, 27mndidcl 17766 . 2 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
296, 1, 7oppgplus 18238 . . 3 ((0g𝑅)(+g𝑂)𝑥) = (𝑥(+g𝑅)(0g𝑅))
302, 6, 27mndrid 17770 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
3129, 30syl5eq 2820 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑂)𝑥) = 𝑥)
326, 1, 7oppgplus 18238 . . 3 (𝑥(+g𝑂)(0g𝑅)) = ((0g𝑅)(+g𝑅)𝑥)
332, 6, 27mndlid 17769 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
3432, 33syl5eq 2820 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)(0g𝑅)) = 𝑥)
354, 5, 11, 26, 28, 31, 34ismndd 17771 1 (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2048  cfv 6182  (class class class)co 6970  Basecbs 16329  +gcplusg 16411  0gc0g 16559  Mndcmnd 17752  oppgcoppg 18234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-tpos 7688  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-er 8081  df-en 8299  df-dom 8300  df-sdom 8301  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-nn 11432  df-2 11496  df-ndx 16332  df-slot 16333  df-base 16335  df-sets 16336  df-plusg 16424  df-0g 16561  df-mgm 17700  df-sgrp 17742  df-mnd 17753  df-oppg 18235
This theorem is referenced by:  oppgmndb  18244  oppggrp  18246  gsumwrev  18255  gsumzoppg  18807  gsumzinv  18808  oppgtmd  22399
  Copyright terms: Public domain W3C validator