| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgmnd | Structured version Visualization version GIF version | ||
| Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
| Ref | Expression |
|---|---|
| oppgmnd | ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝑅) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | oppgbas 19263 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂)) |
| 5 | eqidd 2732 | . 2 ⊢ (𝑅 ∈ Mnd → (+g‘𝑂) = (+g‘𝑂)) | |
| 6 | eqid 2731 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 7 | eqid 2731 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 8 | 6, 1, 7 | oppgplus 19261 | . . 3 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) |
| 9 | 2, 6 | mndcl 18650 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 10 | 9 | 3com23 1126 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 11 | 8, 10 | eqeltrid 2835 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑂)𝑦) ∈ (Base‘𝑅)) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd) | |
| 13 | simpr3 1197 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) | |
| 14 | simpr2 1196 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | |
| 15 | simpr1 1195 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | |
| 16 | 2, 6 | mndass 18651 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥))) |
| 17 | 12, 13, 14, 15, 16 | syl13anc 1374 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥))) |
| 18 | 17 | eqcomd 2737 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥)) |
| 19 | 8 | oveq1i 7356 | . . . 4 ⊢ ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = ((𝑦(+g‘𝑅)𝑥)(+g‘𝑂)𝑧) |
| 20 | 6, 1, 7 | oppgplus 19261 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑥)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) |
| 21 | 19, 20 | eqtri 2754 | . . 3 ⊢ ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) |
| 22 | 6, 1, 7 | oppgplus 19261 | . . . . 5 ⊢ (𝑦(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)𝑦) |
| 23 | 22 | oveq2i 7357 | . . . 4 ⊢ (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧)) = (𝑥(+g‘𝑂)(𝑧(+g‘𝑅)𝑦)) |
| 24 | 6, 1, 7 | oppgplus 19261 | . . . 4 ⊢ (𝑥(+g‘𝑂)(𝑧(+g‘𝑅)𝑦)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) |
| 25 | 23, 24 | eqtri 2754 | . . 3 ⊢ (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) |
| 26 | 18, 21, 25 | 3eqtr4g 2791 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧))) |
| 27 | eqid 2731 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 28 | 2, 27 | mndidcl 18657 | . 2 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 29 | 6, 1, 7 | oppgplus 19261 | . . 3 ⊢ ((0g‘𝑅)(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)(0g‘𝑅)) |
| 30 | 2, 6, 27 | mndrid 18663 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)(0g‘𝑅)) = 𝑥) |
| 31 | 29, 30 | eqtrid 2778 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑂)𝑥) = 𝑥) |
| 32 | 6, 1, 7 | oppgplus 19261 | . . 3 ⊢ (𝑥(+g‘𝑂)(0g‘𝑅)) = ((0g‘𝑅)(+g‘𝑅)𝑥) |
| 33 | 2, 6, 27 | mndlid 18662 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)𝑥) = 𝑥) |
| 34 | 32, 33 | eqtrid 2778 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑂)(0g‘𝑅)) = 𝑥) |
| 35 | 4, 5, 11, 26, 28, 31, 34 | ismndd 18664 | 1 ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 oppgcoppg 19257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-oppg 19258 |
| This theorem is referenced by: oppgmndb 19267 oppggrp 19269 gsumwrev 19278 gsumzoppg 19856 gsumzinv 19857 oppgtmd 24012 lsmsnorb2 33357 oppgoppchom 49701 oppgoppcco 49702 oppgoppcid 49703 |
| Copyright terms: Public domain | W3C validator |