MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgmnd Structured version   Visualization version   GIF version

Theorem oppgmnd 18746
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypothesis
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppgmnd (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)

Proof of Theorem oppgmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppgbas.1 . . . 4 𝑂 = (oppg𝑅)
2 eqid 2737 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2oppgbas 18743 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂))
5 eqidd 2738 . 2 (𝑅 ∈ Mnd → (+g𝑂) = (+g𝑂))
6 eqid 2737 . . . 4 (+g𝑅) = (+g𝑅)
7 eqid 2737 . . . 4 (+g𝑂) = (+g𝑂)
86, 1, 7oppgplus 18741 . . 3 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑅)𝑥)
92, 6mndcl 18181 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
1093com23 1128 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
118, 10eqeltrid 2842 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)𝑦) ∈ (Base‘𝑅))
12 simpl 486 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd)
13 simpr3 1198 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
14 simpr2 1197 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
15 simpr1 1196 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
162, 6mndass 18182 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1712, 13, 14, 15, 16syl13anc 1374 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1817eqcomd 2743 . . 3 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥))
198oveq1i 7223 . . . 4 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧)
206, 1, 7oppgplus 18741 . . . 4 ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
2119, 20eqtri 2765 . . 3 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
226, 1, 7oppgplus 18741 . . . . 5 (𝑦(+g𝑂)𝑧) = (𝑧(+g𝑅)𝑦)
2322oveq2i 7224 . . . 4 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦))
246, 1, 7oppgplus 18741 . . . 4 (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2523, 24eqtri 2765 . . 3 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2618, 21, 253eqtr4g 2803 . 2 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)))
27 eqid 2737 . . 3 (0g𝑅) = (0g𝑅)
282, 27mndidcl 18188 . 2 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
296, 1, 7oppgplus 18741 . . 3 ((0g𝑅)(+g𝑂)𝑥) = (𝑥(+g𝑅)(0g𝑅))
302, 6, 27mndrid 18194 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
3129, 30syl5eq 2790 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑂)𝑥) = 𝑥)
326, 1, 7oppgplus 18741 . . 3 (𝑥(+g𝑂)(0g𝑅)) = ((0g𝑅)(+g𝑅)𝑥)
332, 6, 27mndlid 18193 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
3432, 33syl5eq 2790 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)(0g𝑅)) = 𝑥)
354, 5, 11, 26, 28, 31, 34ismndd 18195 1 (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  0gc0g 16944  Mndcmnd 18173  oppgcoppg 18737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-tpos 7968  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-0g 16946  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-oppg 18738
This theorem is referenced by:  oppgmndb  18747  oppggrp  18749  gsumwrev  18758  gsumzoppg  19329  gsumzinv  19330  oppgtmd  22994  lsmsnorb2  31294
  Copyright terms: Public domain W3C validator