MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgmnd Structured version   Visualization version   GIF version

Theorem oppgmnd 18876
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypothesis
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppgmnd (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)

Proof of Theorem oppgmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppgbas.1 . . . 4 𝑂 = (oppg𝑅)
2 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2oppgbas 18871 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂))
5 eqidd 2739 . 2 (𝑅 ∈ Mnd → (+g𝑂) = (+g𝑂))
6 eqid 2738 . . . 4 (+g𝑅) = (+g𝑅)
7 eqid 2738 . . . 4 (+g𝑂) = (+g𝑂)
86, 1, 7oppgplus 18868 . . 3 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑅)𝑥)
92, 6mndcl 18308 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
1093com23 1124 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
118, 10eqeltrid 2843 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)𝑦) ∈ (Base‘𝑅))
12 simpl 482 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd)
13 simpr3 1194 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
14 simpr2 1193 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
15 simpr1 1192 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
162, 6mndass 18309 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1712, 13, 14, 15, 16syl13anc 1370 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1817eqcomd 2744 . . 3 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥))
198oveq1i 7265 . . . 4 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧)
206, 1, 7oppgplus 18868 . . . 4 ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
2119, 20eqtri 2766 . . 3 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
226, 1, 7oppgplus 18868 . . . . 5 (𝑦(+g𝑂)𝑧) = (𝑧(+g𝑅)𝑦)
2322oveq2i 7266 . . . 4 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦))
246, 1, 7oppgplus 18868 . . . 4 (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2523, 24eqtri 2766 . . 3 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2618, 21, 253eqtr4g 2804 . 2 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)))
27 eqid 2738 . . 3 (0g𝑅) = (0g𝑅)
282, 27mndidcl 18315 . 2 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
296, 1, 7oppgplus 18868 . . 3 ((0g𝑅)(+g𝑂)𝑥) = (𝑥(+g𝑅)(0g𝑅))
302, 6, 27mndrid 18321 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
3129, 30eqtrid 2790 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑂)𝑥) = 𝑥)
326, 1, 7oppgplus 18868 . . 3 (𝑥(+g𝑂)(0g𝑅)) = ((0g𝑅)(+g𝑅)𝑥)
332, 6, 27mndlid 18320 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
3432, 33eqtrid 2790 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)(0g𝑅)) = 𝑥)
354, 5, 11, 26, 28, 31, 34ismndd 18322 1 (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  oppgcoppg 18864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-oppg 18865
This theorem is referenced by:  oppgmndb  18877  oppggrp  18879  gsumwrev  18888  gsumzoppg  19460  gsumzinv  19461  oppgtmd  23156  lsmsnorb2  31482
  Copyright terms: Public domain W3C validator