![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgmnd | Structured version Visualization version GIF version |
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
Ref | Expression |
---|---|
oppgmnd | ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝑅) | |
2 | eqid 2772 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | oppgbas 18240 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂)) |
5 | eqidd 2773 | . 2 ⊢ (𝑅 ∈ Mnd → (+g‘𝑂) = (+g‘𝑂)) | |
6 | eqid 2772 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
7 | eqid 2772 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
8 | 6, 1, 7 | oppgplus 18238 | . . 3 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) |
9 | 2, 6 | mndcl 17759 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
10 | 9 | 3com23 1106 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
11 | 8, 10 | syl5eqel 2864 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑂)𝑦) ∈ (Base‘𝑅)) |
12 | simpl 475 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd) | |
13 | simpr3 1176 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) | |
14 | simpr2 1175 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | |
15 | simpr1 1174 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | |
16 | 2, 6 | mndass 17760 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥))) |
17 | 12, 13, 14, 15, 16 | syl13anc 1352 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥))) |
18 | 17 | eqcomd 2778 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥)) |
19 | 8 | oveq1i 6980 | . . . 4 ⊢ ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = ((𝑦(+g‘𝑅)𝑥)(+g‘𝑂)𝑧) |
20 | 6, 1, 7 | oppgplus 18238 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑥)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) |
21 | 19, 20 | eqtri 2796 | . . 3 ⊢ ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) |
22 | 6, 1, 7 | oppgplus 18238 | . . . . 5 ⊢ (𝑦(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)𝑦) |
23 | 22 | oveq2i 6981 | . . . 4 ⊢ (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧)) = (𝑥(+g‘𝑂)(𝑧(+g‘𝑅)𝑦)) |
24 | 6, 1, 7 | oppgplus 18238 | . . . 4 ⊢ (𝑥(+g‘𝑂)(𝑧(+g‘𝑅)𝑦)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) |
25 | 23, 24 | eqtri 2796 | . . 3 ⊢ (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) |
26 | 18, 21, 25 | 3eqtr4g 2833 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧))) |
27 | eqid 2772 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
28 | 2, 27 | mndidcl 17766 | . 2 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
29 | 6, 1, 7 | oppgplus 18238 | . . 3 ⊢ ((0g‘𝑅)(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)(0g‘𝑅)) |
30 | 2, 6, 27 | mndrid 17770 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)(0g‘𝑅)) = 𝑥) |
31 | 29, 30 | syl5eq 2820 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑂)𝑥) = 𝑥) |
32 | 6, 1, 7 | oppgplus 18238 | . . 3 ⊢ (𝑥(+g‘𝑂)(0g‘𝑅)) = ((0g‘𝑅)(+g‘𝑅)𝑥) |
33 | 2, 6, 27 | mndlid 17769 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)𝑥) = 𝑥) |
34 | 32, 33 | syl5eq 2820 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑂)(0g‘𝑅)) = 𝑥) |
35 | 4, 5, 11, 26, 28, 31, 34 | ismndd 17771 | 1 ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ‘cfv 6182 (class class class)co 6970 Basecbs 16329 +gcplusg 16411 0gc0g 16559 Mndcmnd 17752 oppgcoppg 18234 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-tpos 7688 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-nn 11432 df-2 11496 df-ndx 16332 df-slot 16333 df-base 16335 df-sets 16336 df-plusg 16424 df-0g 16561 df-mgm 17700 df-sgrp 17742 df-mnd 17753 df-oppg 18235 |
This theorem is referenced by: oppgmndb 18244 oppggrp 18246 gsumwrev 18255 gsumzoppg 18807 gsumzinv 18808 oppgtmd 22399 |
Copyright terms: Public domain | W3C validator |