| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgmnd | Structured version Visualization version GIF version | ||
| Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
| Ref | Expression |
|---|---|
| oppgmnd | ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | . . . 4 ⊢ 𝑂 = (oppg‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | oppgbas 19230 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂)) |
| 5 | eqidd 2730 | . 2 ⊢ (𝑅 ∈ Mnd → (+g‘𝑂) = (+g‘𝑂)) | |
| 6 | eqid 2729 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 7 | eqid 2729 | . . . 4 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 8 | 6, 1, 7 | oppgplus 19228 | . . 3 ⊢ (𝑥(+g‘𝑂)𝑦) = (𝑦(+g‘𝑅)𝑥) |
| 9 | 2, 6 | mndcl 18616 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 10 | 9 | 3com23 1126 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g‘𝑅)𝑥) ∈ (Base‘𝑅)) |
| 11 | 8, 10 | eqeltrid 2832 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑂)𝑦) ∈ (Base‘𝑅)) |
| 12 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd) | |
| 13 | simpr3 1197 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅)) | |
| 14 | simpr2 1196 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅)) | |
| 15 | simpr1 1195 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅)) | |
| 16 | 2, 6 | mndass 18617 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥))) |
| 17 | 12, 13, 14, 15, 16 | syl13anc 1374 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥))) |
| 18 | 17 | eqcomd 2735 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥)) |
| 19 | 8 | oveq1i 7359 | . . . 4 ⊢ ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = ((𝑦(+g‘𝑅)𝑥)(+g‘𝑂)𝑧) |
| 20 | 6, 1, 7 | oppgplus 19228 | . . . 4 ⊢ ((𝑦(+g‘𝑅)𝑥)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) |
| 21 | 19, 20 | eqtri 2752 | . . 3 ⊢ ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)(𝑦(+g‘𝑅)𝑥)) |
| 22 | 6, 1, 7 | oppgplus 19228 | . . . . 5 ⊢ (𝑦(+g‘𝑂)𝑧) = (𝑧(+g‘𝑅)𝑦) |
| 23 | 22 | oveq2i 7360 | . . . 4 ⊢ (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧)) = (𝑥(+g‘𝑂)(𝑧(+g‘𝑅)𝑦)) |
| 24 | 6, 1, 7 | oppgplus 19228 | . . . 4 ⊢ (𝑥(+g‘𝑂)(𝑧(+g‘𝑅)𝑦)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) |
| 25 | 23, 24 | eqtri 2752 | . . 3 ⊢ (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧)) = ((𝑧(+g‘𝑅)𝑦)(+g‘𝑅)𝑥) |
| 26 | 18, 21, 25 | 3eqtr4g 2789 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g‘𝑂)𝑦)(+g‘𝑂)𝑧) = (𝑥(+g‘𝑂)(𝑦(+g‘𝑂)𝑧))) |
| 27 | eqid 2729 | . . 3 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 28 | 2, 27 | mndidcl 18623 | . 2 ⊢ (𝑅 ∈ Mnd → (0g‘𝑅) ∈ (Base‘𝑅)) |
| 29 | 6, 1, 7 | oppgplus 19228 | . . 3 ⊢ ((0g‘𝑅)(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)(0g‘𝑅)) |
| 30 | 2, 6, 27 | mndrid 18629 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑅)(0g‘𝑅)) = 𝑥) |
| 31 | 29, 30 | eqtrid 2776 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑂)𝑥) = 𝑥) |
| 32 | 6, 1, 7 | oppgplus 19228 | . . 3 ⊢ (𝑥(+g‘𝑂)(0g‘𝑅)) = ((0g‘𝑅)(+g‘𝑅)𝑥) |
| 33 | 2, 6, 27 | mndlid 18628 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g‘𝑅)(+g‘𝑅)𝑥) = 𝑥) |
| 34 | 32, 33 | eqtrid 2776 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g‘𝑂)(0g‘𝑅)) = 𝑥) |
| 35 | 4, 5, 11, 26, 28, 31, 34 | ismndd 18630 | 1 ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18608 oppgcoppg 19224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-tpos 8159 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-oppg 19225 |
| This theorem is referenced by: oppgmndb 19234 oppggrp 19236 gsumwrev 19245 gsumzoppg 19823 gsumzinv 19824 oppgtmd 23982 lsmsnorb2 33330 oppgoppchom 49585 oppgoppcco 49586 oppgoppcid 49587 |
| Copyright terms: Public domain | W3C validator |