MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgmnd Structured version   Visualization version   GIF version

Theorem oppgmnd 18961
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypothesis
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppgmnd (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)

Proof of Theorem oppgmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppgbas.1 . . . 4 𝑂 = (oppg𝑅)
2 eqid 2738 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2oppgbas 18956 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂))
5 eqidd 2739 . 2 (𝑅 ∈ Mnd → (+g𝑂) = (+g𝑂))
6 eqid 2738 . . . 4 (+g𝑅) = (+g𝑅)
7 eqid 2738 . . . 4 (+g𝑂) = (+g𝑂)
86, 1, 7oppgplus 18953 . . 3 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑅)𝑥)
92, 6mndcl 18393 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
1093com23 1125 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
118, 10eqeltrid 2843 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)𝑦) ∈ (Base‘𝑅))
12 simpl 483 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd)
13 simpr3 1195 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
14 simpr2 1194 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
15 simpr1 1193 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
162, 6mndass 18394 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1712, 13, 14, 15, 16syl13anc 1371 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1817eqcomd 2744 . . 3 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥))
198oveq1i 7285 . . . 4 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧)
206, 1, 7oppgplus 18953 . . . 4 ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
2119, 20eqtri 2766 . . 3 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
226, 1, 7oppgplus 18953 . . . . 5 (𝑦(+g𝑂)𝑧) = (𝑧(+g𝑅)𝑦)
2322oveq2i 7286 . . . 4 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦))
246, 1, 7oppgplus 18953 . . . 4 (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2523, 24eqtri 2766 . . 3 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2618, 21, 253eqtr4g 2803 . 2 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)))
27 eqid 2738 . . 3 (0g𝑅) = (0g𝑅)
282, 27mndidcl 18400 . 2 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
296, 1, 7oppgplus 18953 . . 3 ((0g𝑅)(+g𝑂)𝑥) = (𝑥(+g𝑅)(0g𝑅))
302, 6, 27mndrid 18406 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
3129, 30eqtrid 2790 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑂)𝑥) = 𝑥)
326, 1, 7oppgplus 18953 . . 3 (𝑥(+g𝑂)(0g𝑅)) = ((0g𝑅)(+g𝑅)𝑥)
332, 6, 27mndlid 18405 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
3432, 33eqtrid 2790 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)(0g𝑅)) = 𝑥)
354, 5, 11, 26, 28, 31, 34ismndd 18407 1 (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Mndcmnd 18385  oppgcoppg 18949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-tpos 8042  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-oppg 18950
This theorem is referenced by:  oppgmndb  18962  oppggrp  18964  gsumwrev  18973  gsumzoppg  19545  gsumzinv  19546  oppgtmd  23248  lsmsnorb2  31580
  Copyright terms: Public domain W3C validator