MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppgmnd Structured version   Visualization version   GIF version

Theorem oppgmnd 19266
Description: The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.)
Hypothesis
Ref Expression
oppgbas.1 𝑂 = (oppg𝑅)
Assertion
Ref Expression
oppgmnd (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)

Proof of Theorem oppgmnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppgbas.1 . . . 4 𝑂 = (oppg𝑅)
2 eqid 2731 . . . 4 (Base‘𝑅) = (Base‘𝑅)
31, 2oppgbas 19263 . . 3 (Base‘𝑅) = (Base‘𝑂)
43a1i 11 . 2 (𝑅 ∈ Mnd → (Base‘𝑅) = (Base‘𝑂))
5 eqidd 2732 . 2 (𝑅 ∈ Mnd → (+g𝑂) = (+g𝑂))
6 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
7 eqid 2731 . . . 4 (+g𝑂) = (+g𝑂)
86, 1, 7oppgplus 19261 . . 3 (𝑥(+g𝑂)𝑦) = (𝑦(+g𝑅)𝑥)
92, 6mndcl 18650 . . . 4 ((𝑅 ∈ Mnd ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
1093com23 1126 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑦(+g𝑅)𝑥) ∈ (Base‘𝑅))
118, 10eqeltrid 2835 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)𝑦) ∈ (Base‘𝑅))
12 simpl 482 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑅 ∈ Mnd)
13 simpr3 1197 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑧 ∈ (Base‘𝑅))
14 simpr2 1196 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑦 ∈ (Base‘𝑅))
15 simpr1 1195 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → 𝑥 ∈ (Base‘𝑅))
162, 6mndass 18651 . . . . 5 ((𝑅 ∈ Mnd ∧ (𝑧 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑥 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1712, 13, 14, 15, 16syl13anc 1374 . . . 4 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)))
1817eqcomd 2737 . . 3 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥))
198oveq1i 7356 . . . 4 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧)
206, 1, 7oppgplus 19261 . . . 4 ((𝑦(+g𝑅)𝑥)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
2119, 20eqtri 2754 . . 3 ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑧(+g𝑅)(𝑦(+g𝑅)𝑥))
226, 1, 7oppgplus 19261 . . . . 5 (𝑦(+g𝑂)𝑧) = (𝑧(+g𝑅)𝑦)
2322oveq2i 7357 . . . 4 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦))
246, 1, 7oppgplus 19261 . . . 4 (𝑥(+g𝑂)(𝑧(+g𝑅)𝑦)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2523, 24eqtri 2754 . . 3 (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)) = ((𝑧(+g𝑅)𝑦)(+g𝑅)𝑥)
2618, 21, 253eqtr4g 2791 . 2 ((𝑅 ∈ Mnd ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅) ∧ 𝑧 ∈ (Base‘𝑅))) → ((𝑥(+g𝑂)𝑦)(+g𝑂)𝑧) = (𝑥(+g𝑂)(𝑦(+g𝑂)𝑧)))
27 eqid 2731 . . 3 (0g𝑅) = (0g𝑅)
282, 27mndidcl 18657 . 2 (𝑅 ∈ Mnd → (0g𝑅) ∈ (Base‘𝑅))
296, 1, 7oppgplus 19261 . . 3 ((0g𝑅)(+g𝑂)𝑥) = (𝑥(+g𝑅)(0g𝑅))
302, 6, 27mndrid 18663 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑅)(0g𝑅)) = 𝑥)
3129, 30eqtrid 2778 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑂)𝑥) = 𝑥)
326, 1, 7oppgplus 19261 . . 3 (𝑥(+g𝑂)(0g𝑅)) = ((0g𝑅)(+g𝑅)𝑥)
332, 6, 27mndlid 18662 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → ((0g𝑅)(+g𝑅)𝑥) = 𝑥)
3432, 33eqtrid 2778 . 2 ((𝑅 ∈ Mnd ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥(+g𝑂)(0g𝑅)) = 𝑥)
354, 5, 11, 26, 28, 31, 34ismndd 18664 1 (𝑅 ∈ Mnd → 𝑂 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cfv 6481  (class class class)co 7346  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Mndcmnd 18642  oppgcoppg 19257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-oppg 19258
This theorem is referenced by:  oppgmndb  19267  oppggrp  19269  gsumwrev  19278  gsumzoppg  19856  gsumzinv  19857  oppgtmd  24012  lsmsnorb2  33357  oppgoppchom  49701  oppgoppcco  49702  oppgoppcid  49703
  Copyright terms: Public domain W3C validator