| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mndvass | Structured version Visualization version GIF version | ||
| Description: Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| Ref | Expression |
|---|---|
| mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
| mndvcl.p | ⊢ + = (+g‘𝑀) |
| Ref | Expression |
|---|---|
| mndvass | ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → ((𝑋 ∘f + 𝑌) ∘f + 𝑍) = (𝑋 ∘f + (𝑌 ∘f + 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapex 8824 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
| 2 | 1 | simprd 495 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
| 4 | 3 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → 𝐼 ∈ V) |
| 5 | elmapi 8825 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
| 6 | 5 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
| 7 | 6 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → 𝑋:𝐼⟶𝐵) |
| 8 | elmapi 8825 | . . . 4 ⊢ (𝑌 ∈ (𝐵 ↑m 𝐼) → 𝑌:𝐼⟶𝐵) | |
| 9 | 8 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼)) → 𝑌:𝐼⟶𝐵) |
| 10 | 9 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → 𝑌:𝐼⟶𝐵) |
| 11 | elmapi 8825 | . . . 4 ⊢ (𝑍 ∈ (𝐵 ↑m 𝐼) → 𝑍:𝐼⟶𝐵) | |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼)) → 𝑍:𝐼⟶𝐵) |
| 13 | 12 | adantl 481 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → 𝑍:𝐼⟶𝐵) |
| 14 | mndvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
| 15 | mndvcl.p | . . . 4 ⊢ + = (+g‘𝑀) | |
| 16 | 14, 15 | mndass 18677 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 17 | 16 | adantlr 715 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 18 | 4, 7, 10, 13, 17 | caofass 7696 | 1 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → ((𝑋 ∘f + 𝑌) ∘f + 𝑍) = (𝑋 ∘f + (𝑌 ∘f + 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 ↑m cmap 8802 Basecbs 17186 +gcplusg 17227 Mndcmnd 18668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-1st 7971 df-2nd 7972 df-map 8804 df-sgrp 18653 df-mnd 18669 |
| This theorem is referenced by: mendring 43184 |
| Copyright terms: Public domain | W3C validator |