MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvass Structured version   Visualization version   GIF version

Theorem mndvass 21757
Description: Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
Assertion
Ref Expression
mndvass ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → ((𝑋f + 𝑌) ∘f + 𝑍) = (𝑋f + (𝑌f + 𝑍)))

Proof of Theorem mndvass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 8793 . . . . 5 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 497 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
323ad2ant1 1134 . . 3 ((𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
43adantl 483 . 2 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → 𝐼 ∈ V)
5 elmapi 8794 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
653ad2ant1 1134 . . 3 ((𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
76adantl 483 . 2 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → 𝑋:𝐼𝐵)
8 elmapi 8794 . . . 4 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
983ad2ant2 1135 . . 3 ((𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
109adantl 483 . 2 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → 𝑌:𝐼𝐵)
11 elmapi 8794 . . . 4 (𝑍 ∈ (𝐵m 𝐼) → 𝑍:𝐼𝐵)
12113ad2ant3 1136 . . 3 ((𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼)) → 𝑍:𝐼𝐵)
1312adantl 483 . 2 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → 𝑍:𝐼𝐵)
14 mndvcl.b . . . 4 𝐵 = (Base‘𝑀)
15 mndvcl.p . . . 4 + = (+g𝑀)
1614, 15mndass 18572 . . 3 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1716adantlr 714 . 2 (((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
184, 7, 10, 13, 17caofass 7659 1 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → ((𝑋f + 𝑌) ∘f + 𝑍) = (𝑋f + (𝑌f + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  Vcvv 3448  wf 6497  cfv 6501  (class class class)co 7362  f cof 7620  m cmap 8772  Basecbs 17090  +gcplusg 17140  Mndcmnd 18563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-1st 7926  df-2nd 7927  df-map 8774  df-sgrp 18553  df-mnd 18564
This theorem is referenced by:  mendring  41548
  Copyright terms: Public domain W3C validator