![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mndvass | Structured version Visualization version GIF version |
Description: Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
mndvcl.b | ⊢ 𝐵 = (Base‘𝑀) |
mndvcl.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
mndvass | ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → ((𝑋 ∘f + 𝑌) ∘f + 𝑍) = (𝑋 ∘f + (𝑌 ∘f + 𝑍))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapex 8842 | . . . . 5 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V)) | |
2 | 1 | simprd 497 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝐼 ∈ V) |
3 | 2 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼)) → 𝐼 ∈ V) |
4 | 3 | adantl 483 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → 𝐼 ∈ V) |
5 | elmapi 8843 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ↑m 𝐼) → 𝑋:𝐼⟶𝐵) | |
6 | 5 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼)) → 𝑋:𝐼⟶𝐵) |
7 | 6 | adantl 483 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → 𝑋:𝐼⟶𝐵) |
8 | elmapi 8843 | . . . 4 ⊢ (𝑌 ∈ (𝐵 ↑m 𝐼) → 𝑌:𝐼⟶𝐵) | |
9 | 8 | 3ad2ant2 1135 | . . 3 ⊢ ((𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼)) → 𝑌:𝐼⟶𝐵) |
10 | 9 | adantl 483 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → 𝑌:𝐼⟶𝐵) |
11 | elmapi 8843 | . . . 4 ⊢ (𝑍 ∈ (𝐵 ↑m 𝐼) → 𝑍:𝐼⟶𝐵) | |
12 | 11 | 3ad2ant3 1136 | . . 3 ⊢ ((𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼)) → 𝑍:𝐼⟶𝐵) |
13 | 12 | adantl 483 | . 2 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → 𝑍:𝐼⟶𝐵) |
14 | mndvcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
15 | mndvcl.p | . . . 4 ⊢ + = (+g‘𝑀) | |
16 | 14, 15 | mndass 18634 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
17 | 16 | adantlr 714 | . 2 ⊢ (((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
18 | 4, 7, 10, 13, 17 | caofass 7707 | 1 ⊢ ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵 ↑m 𝐼) ∧ 𝑌 ∈ (𝐵 ↑m 𝐼) ∧ 𝑍 ∈ (𝐵 ↑m 𝐼))) → ((𝑋 ∘f + 𝑌) ∘f + 𝑍) = (𝑋 ∘f + (𝑌 ∘f + 𝑍))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 Vcvv 3475 ⟶wf 6540 ‘cfv 6544 (class class class)co 7409 ∘f cof 7668 ↑m cmap 8820 Basecbs 17144 +gcplusg 17197 Mndcmnd 18625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-1st 7975 df-2nd 7976 df-map 8822 df-sgrp 18610 df-mnd 18626 |
This theorem is referenced by: mendring 41934 |
Copyright terms: Public domain | W3C validator |