MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvass Structured version   Visualization version   GIF version

Theorem mndvass 21002
Description: Tuple-wise associativity in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
Assertion
Ref Expression
mndvass ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → ((𝑋f + 𝑌) ∘f + 𝑍) = (𝑋f + (𝑌f + 𝑍)))

Proof of Theorem mndvass
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmapex 8426 . . . . 5 (𝑋 ∈ (𝐵m 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
21simprd 498 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝐼 ∈ V)
323ad2ant1 1129 . . 3 ((𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼)) → 𝐼 ∈ V)
43adantl 484 . 2 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → 𝐼 ∈ V)
5 elmapi 8427 . . . 4 (𝑋 ∈ (𝐵m 𝐼) → 𝑋:𝐼𝐵)
653ad2ant1 1129 . . 3 ((𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼)) → 𝑋:𝐼𝐵)
76adantl 484 . 2 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → 𝑋:𝐼𝐵)
8 elmapi 8427 . . . 4 (𝑌 ∈ (𝐵m 𝐼) → 𝑌:𝐼𝐵)
983ad2ant2 1130 . . 3 ((𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼)) → 𝑌:𝐼𝐵)
109adantl 484 . 2 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → 𝑌:𝐼𝐵)
11 elmapi 8427 . . . 4 (𝑍 ∈ (𝐵m 𝐼) → 𝑍:𝐼𝐵)
12113ad2ant3 1131 . . 3 ((𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼)) → 𝑍:𝐼𝐵)
1312adantl 484 . 2 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → 𝑍:𝐼𝐵)
14 mndvcl.b . . . 4 𝐵 = (Base‘𝑀)
15 mndvcl.p . . . 4 + = (+g𝑀)
1614, 15mndass 17919 . . 3 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
1716adantlr 713 . 2 (((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
184, 7, 10, 13, 17caofass 7442 1 ((𝑀 ∈ Mnd ∧ (𝑋 ∈ (𝐵m 𝐼) ∧ 𝑌 ∈ (𝐵m 𝐼) ∧ 𝑍 ∈ (𝐵m 𝐼))) → ((𝑋f + 𝑌) ∘f + 𝑍) = (𝑋f + (𝑌f + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  wf 6350  cfv 6354  (class class class)co 7155  f cof 7406  m cmap 8405  Basecbs 16482  +gcplusg 16564  Mndcmnd 17910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-1st 7688  df-2nd 7689  df-map 8407  df-sgrp 17900  df-mnd 17911
This theorem is referenced by:  mendring  39790
  Copyright terms: Public domain W3C validator