MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmndd Structured version   Visualization version   GIF version

Theorem prdsmndd 17946
Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsmndd.y 𝑌 = (𝑆Xs𝑅)
prdsmndd.i (𝜑𝐼𝑊)
prdsmndd.s (𝜑𝑆𝑉)
prdsmndd.r (𝜑𝑅:𝐼⟶Mnd)
Assertion
Ref Expression
prdsmndd (𝜑𝑌 ∈ Mnd)

Proof of Theorem prdsmndd
Dummy variables 𝑎 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2824 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2824 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdsmndd.y . . . 4 𝑌 = (𝑆Xs𝑅)
4 eqid 2823 . . . 4 (Base‘𝑌) = (Base‘𝑌)
5 eqid 2823 . . . 4 (+g𝑌) = (+g𝑌)
6 prdsmndd.s . . . . . 6 (𝜑𝑆𝑉)
76elexd 3516 . . . . 5 (𝜑𝑆 ∈ V)
87adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑆 ∈ V)
9 prdsmndd.i . . . . . 6 (𝜑𝐼𝑊)
109elexd 3516 . . . . 5 (𝜑𝐼 ∈ V)
1110adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
12 prdsmndd.r . . . . 5 (𝜑𝑅:𝐼⟶Mnd)
1312adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
14 simprl 769 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑌))
15 simprr 771 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
163, 4, 5, 8, 11, 13, 14, 15prdsplusgcl 17944 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
17163impb 1111 . 2 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
1812ffvelrnda 6853 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
1918adantlr 713 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
207ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑆 ∈ V)
2110ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝐼 ∈ V)
2212ffnd 6517 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
2322ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
24 simplr1 1211 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑌))
25 simpr 487 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑦𝐼)
263, 4, 20, 21, 23, 24, 25prdsbasprj 16747 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎𝑦) ∈ (Base‘(𝑅𝑦)))
27 simplr2 1212 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘𝑌))
283, 4, 20, 21, 23, 27, 25prdsbasprj 16747 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑏𝑦) ∈ (Base‘(𝑅𝑦)))
29 simplr3 1213 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑐 ∈ (Base‘𝑌))
303, 4, 20, 21, 23, 29, 25prdsbasprj 16747 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))
31 eqid 2823 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
32 eqid 2823 . . . . . . 7 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
3331, 32mndass 17922 . . . . . 6 (((𝑅𝑦) ∈ Mnd ∧ ((𝑎𝑦) ∈ (Base‘(𝑅𝑦)) ∧ (𝑏𝑦) ∈ (Base‘(𝑅𝑦)) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
3419, 26, 28, 30, 33syl13anc 1368 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
353, 4, 20, 21, 23, 24, 27, 5, 25prdsplusgfval 16749 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g𝑌)𝑏)‘𝑦) = ((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦)))
3635oveq1d 7173 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)) = (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)))
373, 4, 20, 21, 23, 27, 29, 5, 25prdsplusgfval 16749 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑏(+g𝑌)𝑐)‘𝑦) = ((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)))
3837oveq2d 7174 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
3934, 36, 383eqtr4d 2868 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)))
4039mpteq2dva 5163 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))) = (𝑦𝐼 ↦ ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))))
417adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ V)
4210adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
4322adantr 483 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
44163adantr3 1167 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
45 simpr3 1192 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
463, 4, 41, 42, 43, 44, 45, 5prdsplusgval 16748 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑌)𝑏)(+g𝑌)𝑐) = (𝑦𝐼 ↦ (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
47 simpr1 1190 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑌))
4812adantr 483 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
49 simpr2 1191 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
503, 4, 5, 41, 42, 48, 49, 45prdsplusgcl 17944 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏(+g𝑌)𝑐) ∈ (Base‘𝑌))
513, 4, 41, 42, 43, 47, 50, 5prdsplusgval 16748 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)(𝑏(+g𝑌)𝑐)) = (𝑦𝐼 ↦ ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))))
5240, 46, 513eqtr4d 2868 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑌)𝑏)(+g𝑌)𝑐) = (𝑎(+g𝑌)(𝑏(+g𝑌)𝑐)))
53 eqid 2823 . . . 4 (0g𝑅) = (0g𝑅)
543, 4, 5, 7, 10, 12, 53prdsidlem 17945 . . 3 (𝜑 → ((0g𝑅) ∈ (Base‘𝑌) ∧ ∀𝑎 ∈ (Base‘𝑌)(((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎)))
5554simpld 497 . 2 (𝜑 → (0g𝑅) ∈ (Base‘𝑌))
5654simprd 498 . . . 4 (𝜑 → ∀𝑎 ∈ (Base‘𝑌)(((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎))
5756r19.21bi 3210 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → (((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎))
5857simpld 497 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((0g𝑅)(+g𝑌)𝑎) = 𝑎)
5957simprd 498 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)(0g𝑅)) = 𝑎)
601, 2, 17, 52, 55, 58, 59ismndd 17935 1 (𝜑𝑌 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  cmpt 5148  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Xscprds 16721  Mndcmnd 17913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-0g 16717  df-prds 16723  df-mgm 17854  df-sgrp 17903  df-mnd 17914
This theorem is referenced by:  prds0g  17947  pwsmnd  17948  xpsmnd  17953  prdspjmhm  17995  prdsgrpd  18211  prdscmnd  18983  prdsringd  19364  dsmm0cl  20886  prdstmdd  22734
  Copyright terms: Public domain W3C validator