MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdsmndd Structured version   Visualization version   GIF version

Theorem prdsmndd 18206
Description: The product of a family of monoids is a monoid. (Contributed by Stefan O'Rear, 10-Jan-2015.)
Hypotheses
Ref Expression
prdsmndd.y 𝑌 = (𝑆Xs𝑅)
prdsmndd.i (𝜑𝐼𝑊)
prdsmndd.s (𝜑𝑆𝑉)
prdsmndd.r (𝜑𝑅:𝐼⟶Mnd)
Assertion
Ref Expression
prdsmndd (𝜑𝑌 ∈ Mnd)

Proof of Theorem prdsmndd
Dummy variables 𝑎 𝑏 𝑦 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2738 . 2 (𝜑 → (Base‘𝑌) = (Base‘𝑌))
2 eqidd 2738 . 2 (𝜑 → (+g𝑌) = (+g𝑌))
3 prdsmndd.y . . . 4 𝑌 = (𝑆Xs𝑅)
4 eqid 2737 . . . 4 (Base‘𝑌) = (Base‘𝑌)
5 eqid 2737 . . . 4 (+g𝑌) = (+g𝑌)
6 prdsmndd.s . . . . . 6 (𝜑𝑆𝑉)
76elexd 3428 . . . . 5 (𝜑𝑆 ∈ V)
87adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑆 ∈ V)
9 prdsmndd.i . . . . . 6 (𝜑𝐼𝑊)
109elexd 3428 . . . . 5 (𝜑𝐼 ∈ V)
1110adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
12 prdsmndd.r . . . . 5 (𝜑𝑅:𝐼⟶Mnd)
1312adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
14 simprl 771 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑌))
15 simprr 773 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
163, 4, 5, 8, 11, 13, 14, 15prdsplusgcl 18204 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
17163impb 1117 . 2 ((𝜑𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
1812ffvelrnda 6904 . . . . . . 7 ((𝜑𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
1918adantlr 715 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑅𝑦) ∈ Mnd)
207ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑆 ∈ V)
2110ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝐼 ∈ V)
2212ffnd 6546 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
2322ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑅 Fn 𝐼)
24 simplr1 1217 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑎 ∈ (Base‘𝑌))
25 simpr 488 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑦𝐼)
263, 4, 20, 21, 23, 24, 25prdsbasprj 16977 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑎𝑦) ∈ (Base‘(𝑅𝑦)))
27 simplr2 1218 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑏 ∈ (Base‘𝑌))
283, 4, 20, 21, 23, 27, 25prdsbasprj 16977 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑏𝑦) ∈ (Base‘(𝑅𝑦)))
29 simplr3 1219 . . . . . . 7 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → 𝑐 ∈ (Base‘𝑌))
303, 4, 20, 21, 23, 29, 25prdsbasprj 16977 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))
31 eqid 2737 . . . . . . 7 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
32 eqid 2737 . . . . . . 7 (+g‘(𝑅𝑦)) = (+g‘(𝑅𝑦))
3331, 32mndass 18182 . . . . . 6 (((𝑅𝑦) ∈ Mnd ∧ ((𝑎𝑦) ∈ (Base‘(𝑅𝑦)) ∧ (𝑏𝑦) ∈ (Base‘(𝑅𝑦)) ∧ (𝑐𝑦) ∈ (Base‘(𝑅𝑦)))) → (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
3419, 26, 28, 30, 33syl13anc 1374 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
353, 4, 20, 21, 23, 24, 27, 5, 25prdsplusgfval 16979 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎(+g𝑌)𝑏)‘𝑦) = ((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦)))
3635oveq1d 7228 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)) = (((𝑎𝑦)(+g‘(𝑅𝑦))(𝑏𝑦))(+g‘(𝑅𝑦))(𝑐𝑦)))
373, 4, 20, 21, 23, 27, 29, 5, 25prdsplusgfval 16979 . . . . . 6 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑏(+g𝑌)𝑐)‘𝑦) = ((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)))
3837oveq2d 7229 . . . . 5 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
3934, 36, 383eqtr4d 2787 . . . 4 (((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) ∧ 𝑦𝐼) → (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦)) = ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦)))
4039mpteq2dva 5150 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑦𝐼 ↦ (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))) = (𝑦𝐼 ↦ ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))))
417adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑆 ∈ V)
4210adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝐼 ∈ V)
4322adantr 484 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅 Fn 𝐼)
44163adantr3 1173 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)𝑏) ∈ (Base‘𝑌))
45 simpr3 1198 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑐 ∈ (Base‘𝑌))
463, 4, 41, 42, 43, 44, 45, 5prdsplusgval 16978 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑌)𝑏)(+g𝑌)𝑐) = (𝑦𝐼 ↦ (((𝑎(+g𝑌)𝑏)‘𝑦)(+g‘(𝑅𝑦))(𝑐𝑦))))
47 simpr1 1196 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑎 ∈ (Base‘𝑌))
4812adantr 484 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑅:𝐼⟶Mnd)
49 simpr2 1197 . . . . 5 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → 𝑏 ∈ (Base‘𝑌))
503, 4, 5, 41, 42, 48, 49, 45prdsplusgcl 18204 . . . 4 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑏(+g𝑌)𝑐) ∈ (Base‘𝑌))
513, 4, 41, 42, 43, 47, 50, 5prdsplusgval 16978 . . 3 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → (𝑎(+g𝑌)(𝑏(+g𝑌)𝑐)) = (𝑦𝐼 ↦ ((𝑎𝑦)(+g‘(𝑅𝑦))((𝑏(+g𝑌)𝑐)‘𝑦))))
5240, 46, 513eqtr4d 2787 . 2 ((𝜑 ∧ (𝑎 ∈ (Base‘𝑌) ∧ 𝑏 ∈ (Base‘𝑌) ∧ 𝑐 ∈ (Base‘𝑌))) → ((𝑎(+g𝑌)𝑏)(+g𝑌)𝑐) = (𝑎(+g𝑌)(𝑏(+g𝑌)𝑐)))
53 eqid 2737 . . . 4 (0g𝑅) = (0g𝑅)
543, 4, 5, 7, 10, 12, 53prdsidlem 18205 . . 3 (𝜑 → ((0g𝑅) ∈ (Base‘𝑌) ∧ ∀𝑎 ∈ (Base‘𝑌)(((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎)))
5554simpld 498 . 2 (𝜑 → (0g𝑅) ∈ (Base‘𝑌))
5654simprd 499 . . . 4 (𝜑 → ∀𝑎 ∈ (Base‘𝑌)(((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎))
5756r19.21bi 3130 . . 3 ((𝜑𝑎 ∈ (Base‘𝑌)) → (((0g𝑅)(+g𝑌)𝑎) = 𝑎 ∧ (𝑎(+g𝑌)(0g𝑅)) = 𝑎))
5857simpld 498 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → ((0g𝑅)(+g𝑌)𝑎) = 𝑎)
5957simprd 499 . 2 ((𝜑𝑎 ∈ (Base‘𝑌)) → (𝑎(+g𝑌)(0g𝑅)) = 𝑎)
601, 2, 17, 52, 55, 58, 59ismndd 18195 1 (𝜑𝑌 ∈ Mnd)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  cmpt 5135  ccom 5555   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  Basecbs 16760  +gcplusg 16802  0gc0g 16944  Xscprds 16950  Mndcmnd 18173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-0g 16946  df-prds 16952  df-mgm 18114  df-sgrp 18163  df-mnd 18174
This theorem is referenced by:  prds0g  18207  pwsmnd  18208  xpsmnd  18213  prdspjmhm  18255  prdsgrpd  18473  prdscmnd  19246  prdsringd  19630  dsmm0cl  20702  prdstmdd  23021
  Copyright terms: Public domain W3C validator