Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  invginvrid Structured version   Visualization version   GIF version

Theorem invginvrid 48494
Description: Identity for a multiplication with additive and multiplicative inverses in a ring. (Contributed by AV, 18-May-2018.)
Hypotheses
Ref Expression
invginvrid.b 𝐵 = (Base‘𝑅)
invginvrid.u 𝑈 = (Unit‘𝑅)
invginvrid.n 𝑁 = (invg𝑅)
invginvrid.i 𝐼 = (invr𝑅)
invginvrid.t · = (.r𝑅)
Assertion
Ref Expression
invginvrid ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)) = 𝑋)

Proof of Theorem invginvrid
StepHypRef Expression
1 eqid 2733 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 20161 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
323ad2ant1 1133 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (mulGrp‘𝑅) ∈ Mnd)
4 ringgrp 20160 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5 invginvrid.b . . . . . 6 𝐵 = (Base‘𝑅)
6 invginvrid.u . . . . . 6 𝑈 = (Unit‘𝑅)
75, 6unitcl 20297 . . . . 5 (𝑌𝑈𝑌𝐵)
8 invginvrid.n . . . . . 6 𝑁 = (invg𝑅)
95, 8grpinvcl 18904 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
104, 7, 9syl2an 596 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (𝑁𝑌) ∈ 𝐵)
11103adant2 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑁𝑌) ∈ 𝐵)
126, 8unitnegcl 20319 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (𝑁𝑌) ∈ 𝑈)
13 invginvrid.i . . . . . 6 𝐼 = (invr𝑅)
146, 13, 5ringinvcl 20314 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑌) ∈ 𝑈) → (𝐼‘(𝑁𝑌)) ∈ 𝐵)
1512, 14syldan 591 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (𝐼‘(𝑁𝑌)) ∈ 𝐵)
16153adant2 1131 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝐼‘(𝑁𝑌)) ∈ 𝐵)
17 simp2 1137 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑋𝐵)
181, 5mgpbas 20067 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
19 invginvrid.t . . . . . 6 · = (.r𝑅)
201, 19mgpplusg 20066 . . . . 5 · = (+g‘(mulGrp‘𝑅))
2118, 20mndass 18655 . . . 4 (((mulGrp‘𝑅) ∈ Mnd ∧ ((𝑁𝑌) ∈ 𝐵 ∧ (𝐼‘(𝑁𝑌)) ∈ 𝐵𝑋𝐵)) → (((𝑁𝑌) · (𝐼‘(𝑁𝑌))) · 𝑋) = ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)))
2221eqcomd 2739 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ ((𝑁𝑌) ∈ 𝐵 ∧ (𝐼‘(𝑁𝑌)) ∈ 𝐵𝑋𝐵)) → ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)) = (((𝑁𝑌) · (𝐼‘(𝑁𝑌))) · 𝑋))
233, 11, 16, 17, 22syl13anc 1374 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)) = (((𝑁𝑌) · (𝐼‘(𝑁𝑌))) · 𝑋))
24 simp1 1136 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ Ring)
25123adant2 1131 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑁𝑌) ∈ 𝑈)
26 eqid 2733 . . . . 5 (1r𝑅) = (1r𝑅)
276, 13, 19, 26unitrinv 20316 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁𝑌) ∈ 𝑈) → ((𝑁𝑌) · (𝐼‘(𝑁𝑌))) = (1r𝑅))
2824, 25, 27syl2anc 584 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑁𝑌) · (𝐼‘(𝑁𝑌))) = (1r𝑅))
2928oveq1d 7369 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (((𝑁𝑌) · (𝐼‘(𝑁𝑌))) · 𝑋) = ((1r𝑅) · 𝑋))
305, 19, 26ringlidm 20191 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
31303adant3 1132 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((1r𝑅) · 𝑋) = 𝑋)
3223, 29, 313eqtrd 2772 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cfv 6488  (class class class)co 7354  Basecbs 17124  .rcmulr 17166  Mndcmnd 18646  Grpcgrp 18850  invgcminusg 18851  mulGrpcmgp 20062  1rcur 20103  Ringcrg 20155  Unitcui 20277  invrcinvr 20309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-tpos 8164  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-oppr 20259  df-dvdsr 20279  df-unit 20280  df-invr 20310
This theorem is referenced by:  lincresunit3lem1  48607
  Copyright terms: Public domain W3C validator