Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > invginvrid | Structured version Visualization version GIF version |
Description: Identity for a multiplication with additive and multiplicative inverses in a ring. (Contributed by AV, 18-May-2018.) |
Ref | Expression |
---|---|
invginvrid.b | ⊢ 𝐵 = (Base‘𝑅) |
invginvrid.u | ⊢ 𝑈 = (Unit‘𝑅) |
invginvrid.n | ⊢ 𝑁 = (invg‘𝑅) |
invginvrid.i | ⊢ 𝐼 = (invr‘𝑅) |
invginvrid.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
invginvrid | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | 1 | ringmgp 19800 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
3 | 2 | 3ad2ant1 1132 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (mulGrp‘𝑅) ∈ Mnd) |
4 | ringgrp 19799 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
5 | invginvrid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
6 | invginvrid.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
7 | 5, 6 | unitcl 19912 | . . . . 5 ⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵) |
8 | invginvrid.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
9 | 5, 8 | grpinvcl 18638 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
10 | 4, 7, 9 | syl2an 596 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑁‘𝑌) ∈ 𝐵) |
11 | 10 | 3adant2 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑁‘𝑌) ∈ 𝐵) |
12 | 6, 8 | unitnegcl 19934 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑁‘𝑌) ∈ 𝑈) |
13 | invginvrid.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
14 | 6, 13, 5 | ringinvcl 19929 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑌) ∈ 𝑈) → (𝐼‘(𝑁‘𝑌)) ∈ 𝐵) |
15 | 12, 14 | syldan 591 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝐼‘(𝑁‘𝑌)) ∈ 𝐵) |
16 | 15 | 3adant2 1130 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝐼‘(𝑁‘𝑌)) ∈ 𝐵) |
17 | simp2 1136 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
18 | 1, 5 | mgpbas 19737 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
19 | invginvrid.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
20 | 1, 19 | mgpplusg 19735 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
21 | 18, 20 | mndass 18405 | . . . 4 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ ((𝑁‘𝑌) ∈ 𝐵 ∧ (𝐼‘(𝑁‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) · 𝑋) = ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋))) |
22 | 21 | eqcomd 2746 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ ((𝑁‘𝑌) ∈ 𝐵 ∧ (𝐼‘(𝑁‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = (((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) · 𝑋)) |
23 | 3, 11, 16, 17, 22 | syl13anc 1371 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = (((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) · 𝑋)) |
24 | simp1 1135 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
25 | 12 | 3adant2 1130 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑁‘𝑌) ∈ 𝑈) |
26 | eqid 2740 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
27 | 6, 13, 19, 26 | unitrinv 19931 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑌) ∈ 𝑈) → ((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) = (1r‘𝑅)) |
28 | 24, 25, 27 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) = (1r‘𝑅)) |
29 | 28 | oveq1d 7287 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
30 | 5, 19, 26 | ringlidm 19821 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅) · 𝑋) = 𝑋) |
31 | 30 | 3adant3 1131 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((1r‘𝑅) · 𝑋) = 𝑋) |
32 | 23, 29, 31 | 3eqtrd 2784 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ‘cfv 6432 (class class class)co 7272 Basecbs 16923 .rcmulr 16974 Mndcmnd 18396 Grpcgrp 18588 invgcminusg 18589 mulGrpcmgp 19731 1rcur 19748 Ringcrg 19794 Unitcui 19892 invrcinvr 19924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7583 ax-cnex 10938 ax-resscn 10939 ax-1cn 10940 ax-icn 10941 ax-addcl 10942 ax-addrcl 10943 ax-mulcl 10944 ax-mulrcl 10945 ax-mulcom 10946 ax-addass 10947 ax-mulass 10948 ax-distr 10949 ax-i2m1 10950 ax-1ne0 10951 ax-1rid 10952 ax-rnegex 10953 ax-rrecex 10954 ax-cnre 10955 ax-pre-lttri 10956 ax-pre-lttrn 10957 ax-pre-ltadd 10958 ax-pre-mulgt0 10959 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7229 df-ov 7275 df-oprab 7276 df-mpo 7277 df-om 7708 df-2nd 7826 df-tpos 8034 df-frecs 8089 df-wrecs 8120 df-recs 8194 df-rdg 8233 df-er 8490 df-en 8726 df-dom 8727 df-sdom 8728 df-pnf 11022 df-mnf 11023 df-xr 11024 df-ltxr 11025 df-le 11026 df-sub 11218 df-neg 11219 df-nn 11985 df-2 12047 df-3 12048 df-sets 16876 df-slot 16894 df-ndx 16906 df-base 16924 df-ress 16953 df-plusg 16986 df-mulr 16987 df-0g 17163 df-mgm 18337 df-sgrp 18386 df-mnd 18397 df-grp 18591 df-minusg 18592 df-mgp 19732 df-ur 19749 df-ring 19796 df-oppr 19873 df-dvdsr 19894 df-unit 19895 df-invr 19925 |
This theorem is referenced by: lincresunit3lem1 45799 |
Copyright terms: Public domain | W3C validator |