Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  invginvrid Structured version   Visualization version   GIF version

Theorem invginvrid 43173
Description: Identity for a multiplication with additive and multiplicative inverses in a ring. (Contributed by AV, 18-May-2018.)
Hypotheses
Ref Expression
invginvrid.b 𝐵 = (Base‘𝑅)
invginvrid.u 𝑈 = (Unit‘𝑅)
invginvrid.n 𝑁 = (invg𝑅)
invginvrid.i 𝐼 = (invr𝑅)
invginvrid.t · = (.r𝑅)
Assertion
Ref Expression
invginvrid ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)) = 𝑋)

Proof of Theorem invginvrid
StepHypRef Expression
1 eqid 2778 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
21ringmgp 18944 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
323ad2ant1 1124 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (mulGrp‘𝑅) ∈ Mnd)
4 ringgrp 18943 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5 invginvrid.b . . . . . 6 𝐵 = (Base‘𝑅)
6 invginvrid.u . . . . . 6 𝑈 = (Unit‘𝑅)
75, 6unitcl 19050 . . . . 5 (𝑌𝑈𝑌𝐵)
8 invginvrid.n . . . . . 6 𝑁 = (invg𝑅)
95, 8grpinvcl 17858 . . . . 5 ((𝑅 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
104, 7, 9syl2an 589 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (𝑁𝑌) ∈ 𝐵)
11103adant2 1122 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑁𝑌) ∈ 𝐵)
126, 8unitnegcl 19072 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (𝑁𝑌) ∈ 𝑈)
13 invginvrid.i . . . . . 6 𝐼 = (invr𝑅)
146, 13, 5ringinvcl 19067 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝑌) ∈ 𝑈) → (𝐼‘(𝑁𝑌)) ∈ 𝐵)
1512, 14syldan 585 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (𝐼‘(𝑁𝑌)) ∈ 𝐵)
16153adant2 1122 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝐼‘(𝑁𝑌)) ∈ 𝐵)
17 simp2 1128 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑋𝐵)
181, 5mgpbas 18886 . . . . 5 𝐵 = (Base‘(mulGrp‘𝑅))
19 invginvrid.t . . . . . 6 · = (.r𝑅)
201, 19mgpplusg 18884 . . . . 5 · = (+g‘(mulGrp‘𝑅))
2118, 20mndass 17692 . . . 4 (((mulGrp‘𝑅) ∈ Mnd ∧ ((𝑁𝑌) ∈ 𝐵 ∧ (𝐼‘(𝑁𝑌)) ∈ 𝐵𝑋𝐵)) → (((𝑁𝑌) · (𝐼‘(𝑁𝑌))) · 𝑋) = ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)))
2221eqcomd 2784 . . 3 (((mulGrp‘𝑅) ∈ Mnd ∧ ((𝑁𝑌) ∈ 𝐵 ∧ (𝐼‘(𝑁𝑌)) ∈ 𝐵𝑋𝐵)) → ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)) = (((𝑁𝑌) · (𝐼‘(𝑁𝑌))) · 𝑋))
233, 11, 16, 17, 22syl13anc 1440 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)) = (((𝑁𝑌) · (𝐼‘(𝑁𝑌))) · 𝑋))
24 simp1 1127 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ Ring)
25123adant2 1122 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑁𝑌) ∈ 𝑈)
26 eqid 2778 . . . . 5 (1r𝑅) = (1r𝑅)
276, 13, 19, 26unitrinv 19069 . . . 4 ((𝑅 ∈ Ring ∧ (𝑁𝑌) ∈ 𝑈) → ((𝑁𝑌) · (𝐼‘(𝑁𝑌))) = (1r𝑅))
2824, 25, 27syl2anc 579 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑁𝑌) · (𝐼‘(𝑁𝑌))) = (1r𝑅))
2928oveq1d 6939 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (((𝑁𝑌) · (𝐼‘(𝑁𝑌))) · 𝑋) = ((1r𝑅) · 𝑋))
305, 19, 26ringlidm 18962 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((1r𝑅) · 𝑋) = 𝑋)
31303adant3 1123 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((1r𝑅) · 𝑋) = 𝑋)
3223, 29, 313eqtrd 2818 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑁𝑌) · ((𝐼‘(𝑁𝑌)) · 𝑋)) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  cfv 6137  (class class class)co 6924  Basecbs 16259  .rcmulr 16343  Mndcmnd 17684  Grpcgrp 17813  invgcminusg 17814  mulGrpcmgp 18880  1rcur 18892  Ringcrg 18938  Unitcui 19030  invrcinvr 19062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-tpos 7636  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-en 8244  df-dom 8245  df-sdom 8246  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-nn 11379  df-2 11442  df-3 11443  df-ndx 16262  df-slot 16263  df-base 16265  df-sets 16266  df-ress 16267  df-plusg 16355  df-mulr 16356  df-0g 16492  df-mgm 17632  df-sgrp 17674  df-mnd 17685  df-grp 17816  df-minusg 17817  df-mgp 18881  df-ur 18893  df-ring 18940  df-oppr 19014  df-dvdsr 19032  df-unit 19033  df-invr 19063
This theorem is referenced by:  lincresunit3lem1  43293
  Copyright terms: Public domain W3C validator