| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > invginvrid | Structured version Visualization version GIF version | ||
| Description: Identity for a multiplication with additive and multiplicative inverses in a ring. (Contributed by AV, 18-May-2018.) |
| Ref | Expression |
|---|---|
| invginvrid.b | ⊢ 𝐵 = (Base‘𝑅) |
| invginvrid.u | ⊢ 𝑈 = (Unit‘𝑅) |
| invginvrid.n | ⊢ 𝑁 = (invg‘𝑅) |
| invginvrid.i | ⊢ 𝐼 = (invr‘𝑅) |
| invginvrid.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| invginvrid | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2733 | . . . . 5 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | 1 | ringmgp 20161 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 3 | 2 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (mulGrp‘𝑅) ∈ Mnd) |
| 4 | ringgrp 20160 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 5 | invginvrid.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | invginvrid.u | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 7 | 5, 6 | unitcl 20297 | . . . . 5 ⊢ (𝑌 ∈ 𝑈 → 𝑌 ∈ 𝐵) |
| 8 | invginvrid.n | . . . . . 6 ⊢ 𝑁 = (invg‘𝑅) | |
| 9 | 5, 8 | grpinvcl 18904 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
| 10 | 4, 7, 9 | syl2an 596 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑁‘𝑌) ∈ 𝐵) |
| 11 | 10 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑁‘𝑌) ∈ 𝐵) |
| 12 | 6, 8 | unitnegcl 20319 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑁‘𝑌) ∈ 𝑈) |
| 13 | invginvrid.i | . . . . . 6 ⊢ 𝐼 = (invr‘𝑅) | |
| 14 | 6, 13, 5 | ringinvcl 20314 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑌) ∈ 𝑈) → (𝐼‘(𝑁‘𝑌)) ∈ 𝐵) |
| 15 | 12, 14 | syldan 591 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝐼‘(𝑁‘𝑌)) ∈ 𝐵) |
| 16 | 15 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝐼‘(𝑁‘𝑌)) ∈ 𝐵) |
| 17 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
| 18 | 1, 5 | mgpbas 20067 | . . . . 5 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 19 | invginvrid.t | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 20 | 1, 19 | mgpplusg 20066 | . . . . 5 ⊢ · = (+g‘(mulGrp‘𝑅)) |
| 21 | 18, 20 | mndass 18655 | . . . 4 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ ((𝑁‘𝑌) ∈ 𝐵 ∧ (𝐼‘(𝑁‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) · 𝑋) = ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋))) |
| 22 | 21 | eqcomd 2739 | . . 3 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ ((𝑁‘𝑌) ∈ 𝐵 ∧ (𝐼‘(𝑁‘𝑌)) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = (((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) · 𝑋)) |
| 23 | 3, 11, 16, 17, 22 | syl13anc 1374 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = (((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) · 𝑋)) |
| 24 | simp1 1136 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
| 25 | 12 | 3adant2 1131 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑁‘𝑌) ∈ 𝑈) |
| 26 | eqid 2733 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 27 | 6, 13, 19, 26 | unitrinv 20316 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝑌) ∈ 𝑈) → ((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) = (1r‘𝑅)) |
| 28 | 24, 25, 27 | syl2anc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) = (1r‘𝑅)) |
| 29 | 28 | oveq1d 7369 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (((𝑁‘𝑌) · (𝐼‘(𝑁‘𝑌))) · 𝑋) = ((1r‘𝑅) · 𝑋)) |
| 30 | 5, 19, 26 | ringlidm 20191 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((1r‘𝑅) · 𝑋) = 𝑋) |
| 31 | 30 | 3adant3 1132 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((1r‘𝑅) · 𝑋) = 𝑋) |
| 32 | 23, 29, 31 | 3eqtrd 2772 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑁‘𝑌) · ((𝐼‘(𝑁‘𝑌)) · 𝑋)) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ‘cfv 6488 (class class class)co 7354 Basecbs 17124 .rcmulr 17166 Mndcmnd 18646 Grpcgrp 18850 invgcminusg 18851 mulGrpcmgp 20062 1rcur 20103 Ringcrg 20155 Unitcui 20277 invrcinvr 20309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-tpos 8164 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-mulr 17179 df-0g 17349 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-grp 18853 df-minusg 18854 df-cmn 19698 df-abl 19699 df-mgp 20063 df-rng 20075 df-ur 20104 df-ring 20157 df-oppr 20259 df-dvdsr 20279 df-unit 20280 df-invr 20310 |
| This theorem is referenced by: lincresunit3lem1 48607 |
| Copyright terms: Public domain | W3C validator |