MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submefmnd Structured version   Visualization version   GIF version

Theorem submefmnd 18878
Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19395. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
submefmnd.g 𝑀 = (EndoFMnd‘𝐴)
submefmnd.b 𝐵 = (Base‘𝑀)
submefmnd.0 0 = (0g𝑀)
submefmnd.c 𝐹 = (Base‘𝑆)
Assertion
Ref Expression
submefmnd (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑓,𝐹,𝑔
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝑀(𝑓,𝑔)   𝑉(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem submefmnd
StepHypRef Expression
1 submefmnd.g . . . . 5 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18872 . . . 4 (𝐴𝑉𝑀 ∈ Mnd)
3 simpl1 1192 . . . 4 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝑆 ∈ Mnd)
42, 3anim12i 613 . . 3 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd))
5 simpl2 1193 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹𝐵)
6 simpl3 1194 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 0𝐹)
7 simpr 484 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
8 resmpo 7532 . . . . . . . . . 10 ((𝐹𝐵𝐹𝐵) → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
98anidms 566 . . . . . . . . 9 (𝐹𝐵 → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
10 submefmnd.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
11 eqid 2736 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
121, 10, 11efmndplusg 18863 . . . . . . . . . . 11 (+g𝑀) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
1312eqcomi 2745 . . . . . . . . . 10 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g𝑀)
1413reseq1i 5967 . . . . . . . . 9 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = ((+g𝑀) ↾ (𝐹 × 𝐹))
159, 14eqtr3di 2786 . . . . . . . 8 (𝐹𝐵 → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
16153ad2ant2 1134 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
1716adantr 480 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
187, 17eqtrd 2771 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
195, 6, 183jca 1128 . . . 4 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))))
2019adantl 481 . . 3 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))))
21 submefmnd.c . . . 4 𝐹 = (Base‘𝑆)
22 submefmnd.0 . . . 4 0 = (0g𝑀)
2310, 21, 22mndissubm 18790 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubMnd‘𝑀)))
244, 20, 23sylc 65 . 2 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → 𝐹 ∈ (SubMnd‘𝑀))
2524ex 412 1 (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3931   × cxp 5657  cres 5661  ccom 5663  cfv 6536  cmpo 7412  Basecbs 17233  +gcplusg 17276  0gc0g 17458  Mndcmnd 18717  SubMndcsubmnd 18765  EndoFMndcefmnd 18851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-slot 17206  df-ndx 17218  df-base 17234  df-plusg 17289  df-tset 17295  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-efmnd 18852
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator