| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submefmnd | Structured version Visualization version GIF version | ||
| Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19400. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| submefmnd.g | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
| submefmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
| submefmnd.0 | ⊢ 0 = (0g‘𝑀) |
| submefmnd.c | ⊢ 𝐹 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| submefmnd | ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submefmnd.g | . . . . 5 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 2 | 1 | efmndmnd 18876 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 3 | simpl1 1191 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑆 ∈ Mnd) | |
| 4 | 2, 3 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
| 5 | simpl2 1192 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
| 6 | simpl3 1193 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 0 ∈ 𝐹) | |
| 7 | simpr 484 | . . . . . 6 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 8 | resmpo 7536 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵) → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 9 | 8 | anidms 566 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 10 | submefmnd.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑀) | |
| 11 | eqid 2734 | . . . . . . . . . . . 12 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 12 | 1, 10, 11 | efmndplusg 18867 | . . . . . . . . . . 11 ⊢ (+g‘𝑀) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
| 13 | 12 | eqcomi 2743 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘𝑀) |
| 14 | 13 | reseq1i 5975 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)) |
| 15 | 9, 14 | eqtr3di 2784 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
| 16 | 15 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
| 18 | 7, 17 | eqtrd 2769 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
| 19 | 5, 6, 18 | 3jca 1128 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)))) |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)))) |
| 21 | submefmnd.c | . . . 4 ⊢ 𝐹 = (Base‘𝑆) | |
| 22 | submefmnd.0 | . . . 4 ⊢ 0 = (0g‘𝑀) | |
| 23 | 10, 21, 22 | mndissubm 18794 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubMnd‘𝑀))) |
| 24 | 4, 20, 23 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubMnd‘𝑀)) |
| 25 | 24 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 × cxp 5665 ↾ cres 5669 ∘ ccom 5671 ‘cfv 6542 ∈ cmpo 7416 Basecbs 17230 +gcplusg 17277 0gc0g 17460 Mndcmnd 18721 SubMndcsubmnd 18769 EndoFMndcefmnd 18855 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-tset 17296 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-efmnd 18856 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |