MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submefmnd Structured version   Visualization version   GIF version

Theorem submefmnd 18053
Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 18530. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
submefmnd.g 𝑀 = (EndoFMnd‘𝐴)
submefmnd.b 𝐵 = (Base‘𝑀)
submefmnd.0 0 = (0g𝑀)
submefmnd.c 𝐹 = (Base‘𝑆)
Assertion
Ref Expression
submefmnd (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑓,𝐹,𝑔
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝑀(𝑓,𝑔)   𝑉(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem submefmnd
StepHypRef Expression
1 submefmnd.g . . . . 5 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18047 . . . 4 (𝐴𝑉𝑀 ∈ Mnd)
3 simpl1 1186 . . . 4 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝑆 ∈ Mnd)
42, 3anim12i 614 . . 3 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd))
5 simpl2 1187 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹𝐵)
6 simpl3 1188 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 0𝐹)
7 simpr 487 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
8 submefmnd.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
9 eqid 2820 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
101, 8, 9efmndplusg 18038 . . . . . . . . . . 11 (+g𝑀) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
1110eqcomi 2829 . . . . . . . . . 10 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g𝑀)
1211reseq1i 5842 . . . . . . . . 9 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = ((+g𝑀) ↾ (𝐹 × 𝐹))
13 resmpo 7265 . . . . . . . . . 10 ((𝐹𝐵𝐹𝐵) → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1413anidms 569 . . . . . . . . 9 (𝐹𝐵 → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
1512, 14syl5reqr 2870 . . . . . . . 8 (𝐹𝐵 → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
16153ad2ant2 1129 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
1716adantr 483 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
187, 17eqtrd 2855 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
195, 6, 183jca 1123 . . . 4 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))))
2019adantl 484 . . 3 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))))
21 submefmnd.c . . . 4 𝐹 = (Base‘𝑆)
22 submefmnd.0 . . . 4 0 = (0g𝑀)
238, 21, 22mndissubm 17965 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubMnd‘𝑀)))
244, 20, 23sylc 65 . 2 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → 𝐹 ∈ (SubMnd‘𝑀))
2524ex 415 1 (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1536  wcel 2113  wss 3929   × cxp 5546  cres 5550  ccom 5552  cfv 6348  cmpo 7151  Basecbs 16476  +gcplusg 16558  0gc0g 16706  Mndcmnd 17904  SubMndcsubmnd 17948  EndoFMndcefmnd 18026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323  ax-un 7454  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3493  df-sbc 3769  df-csb 3877  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7574  df-1st 7682  df-2nd 7683  df-wrecs 7940  df-recs 8001  df-rdg 8039  df-1o 8095  df-oadd 8099  df-er 8282  df-map 8401  df-en 8503  df-dom 8504  df-sdom 8505  df-fin 8506  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11632  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12890  df-struct 16478  df-ndx 16479  df-slot 16480  df-base 16482  df-plusg 16571  df-tset 16577  df-mgm 17845  df-sgrp 17894  df-mnd 17905  df-submnd 17950  df-efmnd 18027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator