MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submefmnd Structured version   Visualization version   GIF version

Theorem submefmnd 18753
Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19243. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
submefmnd.g 𝑀 = (EndoFMnd‘𝐴)
submefmnd.b 𝐵 = (Base‘𝑀)
submefmnd.0 0 = (0g𝑀)
submefmnd.c 𝐹 = (Base‘𝑆)
Assertion
Ref Expression
submefmnd (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑓,𝐹,𝑔
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝑀(𝑓,𝑔)   𝑉(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem submefmnd
StepHypRef Expression
1 submefmnd.g . . . . 5 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18747 . . . 4 (𝐴𝑉𝑀 ∈ Mnd)
3 simpl1 1191 . . . 4 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝑆 ∈ Mnd)
42, 3anim12i 613 . . 3 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd))
5 simpl2 1192 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹𝐵)
6 simpl3 1193 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 0𝐹)
7 simpr 485 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
8 resmpo 7513 . . . . . . . . . 10 ((𝐹𝐵𝐹𝐵) → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
98anidms 567 . . . . . . . . 9 (𝐹𝐵 → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
10 submefmnd.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
11 eqid 2732 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
121, 10, 11efmndplusg 18738 . . . . . . . . . . 11 (+g𝑀) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
1312eqcomi 2741 . . . . . . . . . 10 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g𝑀)
1413reseq1i 5970 . . . . . . . . 9 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = ((+g𝑀) ↾ (𝐹 × 𝐹))
159, 14eqtr3di 2787 . . . . . . . 8 (𝐹𝐵 → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
16153ad2ant2 1134 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
1716adantr 481 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
187, 17eqtrd 2772 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
195, 6, 183jca 1128 . . . 4 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))))
2019adantl 482 . . 3 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))))
21 submefmnd.c . . . 4 𝐹 = (Base‘𝑆)
22 submefmnd.0 . . . 4 0 = (0g𝑀)
2310, 21, 22mndissubm 18666 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubMnd‘𝑀)))
244, 20, 23sylc 65 . 2 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → 𝐹 ∈ (SubMnd‘𝑀))
2524ex 413 1 (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3945   × cxp 5668  cres 5672  ccom 5674  cfv 6533  cmpo 7396  Basecbs 17128  +gcplusg 17181  0gc0g 17369  Mndcmnd 18604  SubMndcsubmnd 18648  EndoFMndcefmnd 18726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-uz 12807  df-fz 13469  df-struct 17064  df-slot 17099  df-ndx 17111  df-base 17129  df-plusg 17194  df-tset 17200  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-submnd 18650  df-efmnd 18727
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator