| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > submefmnd | Structured version Visualization version GIF version | ||
| Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19346. (Contributed by AV, 17-Feb-2024.) |
| Ref | Expression |
|---|---|
| submefmnd.g | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
| submefmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
| submefmnd.0 | ⊢ 0 = (0g‘𝑀) |
| submefmnd.c | ⊢ 𝐹 = (Base‘𝑆) |
| Ref | Expression |
|---|---|
| submefmnd | ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submefmnd.g | . . . . 5 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
| 2 | 1 | efmndmnd 18823 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
| 3 | simpl1 1192 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑆 ∈ Mnd) | |
| 4 | 2, 3 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
| 5 | simpl2 1193 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
| 6 | simpl3 1194 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 0 ∈ 𝐹) | |
| 7 | simpr 484 | . . . . . 6 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 8 | resmpo 7512 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵) → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
| 9 | 8 | anidms 566 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
| 10 | submefmnd.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑀) | |
| 11 | eqid 2730 | . . . . . . . . . . . 12 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 12 | 1, 10, 11 | efmndplusg 18814 | . . . . . . . . . . 11 ⊢ (+g‘𝑀) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
| 13 | 12 | eqcomi 2739 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘𝑀) |
| 14 | 13 | reseq1i 5949 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)) |
| 15 | 9, 14 | eqtr3di 2780 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
| 16 | 15 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
| 18 | 7, 17 | eqtrd 2765 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
| 19 | 5, 6, 18 | 3jca 1128 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)))) |
| 20 | 19 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)))) |
| 21 | submefmnd.c | . . . 4 ⊢ 𝐹 = (Base‘𝑆) | |
| 22 | submefmnd.0 | . . . 4 ⊢ 0 = (0g‘𝑀) | |
| 23 | 10, 21, 22 | mndissubm 18741 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubMnd‘𝑀))) |
| 24 | 4, 20, 23 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubMnd‘𝑀)) |
| 25 | 24 | ex 412 | 1 ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 × cxp 5639 ↾ cres 5643 ∘ ccom 5645 ‘cfv 6514 ∈ cmpo 7392 Basecbs 17186 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 SubMndcsubmnd 18716 EndoFMndcefmnd 18802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-tset 17246 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-efmnd 18803 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |