MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submefmnd Structured version   Visualization version   GIF version

Theorem submefmnd 18800
Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19319. (Contributed by AV, 17-Feb-2024.)
Hypotheses
Ref Expression
submefmnd.g 𝑀 = (EndoFMnd‘𝐴)
submefmnd.b 𝐵 = (Base‘𝑀)
submefmnd.0 0 = (0g𝑀)
submefmnd.c 𝐹 = (Base‘𝑆)
Assertion
Ref Expression
submefmnd (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
Distinct variable groups:   𝐴,𝑓,𝑔   𝐵,𝑓,𝑔   𝑓,𝐹,𝑔
Allowed substitution hints:   𝑆(𝑓,𝑔)   𝑀(𝑓,𝑔)   𝑉(𝑓,𝑔)   0 (𝑓,𝑔)

Proof of Theorem submefmnd
StepHypRef Expression
1 submefmnd.g . . . . 5 𝑀 = (EndoFMnd‘𝐴)
21efmndmnd 18794 . . . 4 (𝐴𝑉𝑀 ∈ Mnd)
3 simpl1 1192 . . . 4 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝑆 ∈ Mnd)
42, 3anim12i 613 . . 3 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd))
5 simpl2 1193 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹𝐵)
6 simpl3 1194 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 0𝐹)
7 simpr 484 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
8 resmpo 7466 . . . . . . . . . 10 ((𝐹𝐵𝐹𝐵) → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
98anidms 566 . . . . . . . . 9 (𝐹𝐵 → ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))
10 submefmnd.b . . . . . . . . . . . 12 𝐵 = (Base‘𝑀)
11 eqid 2731 . . . . . . . . . . . 12 (+g𝑀) = (+g𝑀)
121, 10, 11efmndplusg 18785 . . . . . . . . . . 11 (+g𝑀) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
1312eqcomi 2740 . . . . . . . . . 10 (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) = (+g𝑀)
1413reseq1i 5924 . . . . . . . . 9 ((𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)) ↾ (𝐹 × 𝐹)) = ((+g𝑀) ↾ (𝐹 × 𝐹))
159, 14eqtr3di 2781 . . . . . . . 8 (𝐹𝐵 → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
16153ad2ant2 1134 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
1716adantr 480 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
187, 17eqtrd 2766 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹)))
195, 6, 183jca 1128 . . . 4 (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → (𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))))
2019adantl 481 . . 3 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → (𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))))
21 submefmnd.c . . . 4 𝐹 = (Base‘𝑆)
22 submefmnd.0 . . . 4 0 = (0g𝑀)
2310, 21, 22mndissubm 18712 . . 3 ((𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝐹𝐵0𝐹 ∧ (+g𝑆) = ((+g𝑀) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubMnd‘𝑀)))
244, 20, 23sylc 65 . 2 ((𝐴𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔)))) → 𝐹 ∈ (SubMnd‘𝑀))
2524ex 412 1 (𝐴𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹𝐵0𝐹) ∧ (+g𝑆) = (𝑓𝐹, 𝑔𝐹 ↦ (𝑓𝑔))) → 𝐹 ∈ (SubMnd‘𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3902   × cxp 5614  cres 5618  ccom 5620  cfv 6481  cmpo 7348  Basecbs 17117  +gcplusg 17158  0gc0g 17340  Mndcmnd 18639  SubMndcsubmnd 18687  EndoFMndcefmnd 18773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-3 12186  df-4 12187  df-5 12188  df-6 12189  df-7 12190  df-8 12191  df-9 12192  df-n0 12379  df-z 12466  df-uz 12730  df-fz 13405  df-struct 17055  df-slot 17090  df-ndx 17102  df-base 17118  df-plusg 17171  df-tset 17177  df-mgm 18545  df-sgrp 18624  df-mnd 18640  df-submnd 18689  df-efmnd 18774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator