![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submefmnd | Structured version Visualization version GIF version |
Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 19243. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
submefmnd.g | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
submefmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
submefmnd.0 | ⊢ 0 = (0g‘𝑀) |
submefmnd.c | ⊢ 𝐹 = (Base‘𝑆) |
Ref | Expression |
---|---|
submefmnd | ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submefmnd.g | . . . . 5 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
2 | 1 | efmndmnd 18747 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
3 | simpl1 1191 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑆 ∈ Mnd) | |
4 | 2, 3 | anim12i 613 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
5 | simpl2 1192 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
6 | simpl3 1193 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 0 ∈ 𝐹) | |
7 | simpr 485 | . . . . . 6 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
8 | resmpo 7513 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵) → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
9 | 8 | anidms 567 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
10 | submefmnd.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑀) | |
11 | eqid 2732 | . . . . . . . . . . . 12 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
12 | 1, 10, 11 | efmndplusg 18738 | . . . . . . . . . . 11 ⊢ (+g‘𝑀) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
13 | 12 | eqcomi 2741 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘𝑀) |
14 | 13 | reseq1i 5970 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)) |
15 | 9, 14 | eqtr3di 2787 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
16 | 15 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
17 | 16 | adantr 481 | . . . . . 6 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
18 | 7, 17 | eqtrd 2772 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
19 | 5, 6, 18 | 3jca 1128 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)))) |
20 | 19 | adantl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)))) |
21 | submefmnd.c | . . . 4 ⊢ 𝐹 = (Base‘𝑆) | |
22 | submefmnd.0 | . . . 4 ⊢ 0 = (0g‘𝑀) | |
23 | 10, 21, 22 | mndissubm 18666 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubMnd‘𝑀))) |
24 | 4, 20, 23 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubMnd‘𝑀)) |
25 | 24 | ex 413 | 1 ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3945 × cxp 5668 ↾ cres 5672 ∘ ccom 5674 ‘cfv 6533 ∈ cmpo 7396 Basecbs 17128 +gcplusg 17181 0gc0g 17369 Mndcmnd 18604 SubMndcsubmnd 18648 EndoFMndcefmnd 18726 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7840 df-1st 7959 df-2nd 7960 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-1o 8450 df-er 8688 df-map 8807 df-en 8925 df-dom 8926 df-sdom 8927 df-fin 8928 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-nn 12197 df-2 12259 df-3 12260 df-4 12261 df-5 12262 df-6 12263 df-7 12264 df-8 12265 df-9 12266 df-n0 12457 df-z 12543 df-uz 12807 df-fz 13469 df-struct 17064 df-slot 17099 df-ndx 17111 df-base 17129 df-plusg 17194 df-tset 17200 df-mgm 18545 df-sgrp 18594 df-mnd 18605 df-submnd 18650 df-efmnd 18727 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |