Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > submefmnd | Structured version Visualization version GIF version |
Description: If the base set of a monoid is contained in the base set of the monoid of endofunctions on a set 𝐴, contains the identity function and has the function composition as group operation, then its base set is a submonoid of the monoid of endofunctions on set 𝐴. Analogous to pgrpsubgsymg 18657. (Contributed by AV, 17-Feb-2024.) |
Ref | Expression |
---|---|
submefmnd.g | ⊢ 𝑀 = (EndoFMnd‘𝐴) |
submefmnd.b | ⊢ 𝐵 = (Base‘𝑀) |
submefmnd.0 | ⊢ 0 = (0g‘𝑀) |
submefmnd.c | ⊢ 𝐹 = (Base‘𝑆) |
Ref | Expression |
---|---|
submefmnd | ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submefmnd.g | . . . . 5 ⊢ 𝑀 = (EndoFMnd‘𝐴) | |
2 | 1 | efmndmnd 18172 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝑀 ∈ Mnd) |
3 | simpl1 1192 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝑆 ∈ Mnd) | |
4 | 2, 3 | anim12i 616 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd)) |
5 | simpl2 1193 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ⊆ 𝐵) | |
6 | simpl3 1194 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 0 ∈ 𝐹) | |
7 | simpr 488 | . . . . . 6 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
8 | resmpo 7288 | . . . . . . . . . 10 ⊢ ((𝐹 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵) → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) | |
9 | 8 | anidms 570 | . . . . . . . . 9 ⊢ (𝐹 ⊆ 𝐵 → ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) |
10 | submefmnd.b | . . . . . . . . . . . 12 ⊢ 𝐵 = (Base‘𝑀) | |
11 | eqid 2738 | . . . . . . . . . . . 12 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
12 | 1, 10, 11 | efmndplusg 18163 | . . . . . . . . . . 11 ⊢ (+g‘𝑀) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
13 | 12 | eqcomi 2747 | . . . . . . . . . 10 ⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) = (+g‘𝑀) |
14 | 13 | reseq1i 5821 | . . . . . . . . 9 ⊢ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) ↾ (𝐹 × 𝐹)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)) |
15 | 9, 14 | eqtr3di 2788 | . . . . . . . 8 ⊢ (𝐹 ⊆ 𝐵 → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
16 | 15 | 3ad2ant2 1135 | . . . . . . 7 ⊢ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
17 | 16 | adantr 484 | . . . . . 6 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
18 | 7, 17 | eqtrd 2773 | . . . . 5 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) |
19 | 5, 6, 18 | 3jca 1129 | . . . 4 ⊢ (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → (𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)))) |
20 | 19 | adantl 485 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → (𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹)))) |
21 | submefmnd.c | . . . 4 ⊢ 𝐹 = (Base‘𝑆) | |
22 | submefmnd.0 | . . . 4 ⊢ 0 = (0g‘𝑀) | |
23 | 10, 21, 22 | mndissubm 18090 | . . 3 ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ∈ Mnd) → ((𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹 ∧ (+g‘𝑆) = ((+g‘𝑀) ↾ (𝐹 × 𝐹))) → 𝐹 ∈ (SubMnd‘𝑀))) |
24 | 4, 20, 23 | sylc 65 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ ((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔)))) → 𝐹 ∈ (SubMnd‘𝑀)) |
25 | 24 | ex 416 | 1 ⊢ (𝐴 ∈ 𝑉 → (((𝑆 ∈ Mnd ∧ 𝐹 ⊆ 𝐵 ∧ 0 ∈ 𝐹) ∧ (+g‘𝑆) = (𝑓 ∈ 𝐹, 𝑔 ∈ 𝐹 ↦ (𝑓 ∘ 𝑔))) → 𝐹 ∈ (SubMnd‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ⊆ wss 3843 × cxp 5523 ↾ cres 5527 ∘ ccom 5529 ‘cfv 6339 ∈ cmpo 7174 Basecbs 16588 +gcplusg 16670 0gc0g 16818 Mndcmnd 18029 SubMndcsubmnd 18073 EndoFMndcefmnd 18151 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 ax-cnex 10673 ax-resscn 10674 ax-1cn 10675 ax-icn 10676 ax-addcl 10677 ax-addrcl 10678 ax-mulcl 10679 ax-mulrcl 10680 ax-mulcom 10681 ax-addass 10682 ax-mulass 10683 ax-distr 10684 ax-i2m1 10685 ax-1ne0 10686 ax-1rid 10687 ax-rnegex 10688 ax-rrecex 10689 ax-cnre 10690 ax-pre-lttri 10691 ax-pre-lttrn 10692 ax-pre-ltadd 10693 ax-pre-mulgt0 10694 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7129 df-ov 7175 df-oprab 7176 df-mpo 7177 df-om 7602 df-1st 7716 df-2nd 7717 df-wrecs 7978 df-recs 8039 df-rdg 8077 df-1o 8133 df-er 8322 df-map 8441 df-en 8558 df-dom 8559 df-sdom 8560 df-fin 8561 df-pnf 10757 df-mnf 10758 df-xr 10759 df-ltxr 10760 df-le 10761 df-sub 10952 df-neg 10953 df-nn 11719 df-2 11781 df-3 11782 df-4 11783 df-5 11784 df-6 11785 df-7 11786 df-8 11787 df-9 11788 df-n0 11979 df-z 12065 df-uz 12327 df-fz 12984 df-struct 16590 df-ndx 16591 df-slot 16592 df-base 16594 df-plusg 16683 df-tset 16689 df-mgm 17970 df-sgrp 18019 df-mnd 18030 df-submnd 18075 df-efmnd 18152 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |