Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀)) |
2 | 1 | pweqd 4549 |
. . . . 5
⊢ (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀)) |
3 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → (0g‘𝑚) = (0g‘𝑀)) |
4 | 3 | eleq1d 2823 |
. . . . . 6
⊢ (𝑚 = 𝑀 → ((0g‘𝑚) ∈ 𝑡 ↔ (0g‘𝑀) ∈ 𝑡)) |
5 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → (+g‘𝑚) = (+g‘𝑀)) |
6 | 5 | oveqd 7272 |
. . . . . . . 8
⊢ (𝑚 = 𝑀 → (𝑥(+g‘𝑚)𝑦) = (𝑥(+g‘𝑀)𝑦)) |
7 | 6 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑚 = 𝑀 → ((𝑥(+g‘𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)) |
8 | 7 | 2ralbidv 3122 |
. . . . . 6
⊢ (𝑚 = 𝑀 → (∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)) |
9 | 4, 8 | anbi12d 630 |
. . . . 5
⊢ (𝑚 = 𝑀 → (((0g‘𝑚) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑚)𝑦) ∈ 𝑡) ↔ ((0g‘𝑀) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡))) |
10 | 2, 9 | rabeqbidv 3410 |
. . . 4
⊢ (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣
((0g‘𝑚)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑚)𝑦) ∈ 𝑡)} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)}) |
11 | | df-submnd 18346 |
. . . 4
⊢ SubMnd =
(𝑚 ∈ Mnd ↦
{𝑡 ∈ 𝒫
(Base‘𝑚) ∣
((0g‘𝑚)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑚)𝑦) ∈ 𝑡)}) |
12 | | fvex 6769 |
. . . . . 6
⊢
(Base‘𝑀)
∈ V |
13 | 12 | pwex 5298 |
. . . . 5
⊢ 𝒫
(Base‘𝑀) ∈
V |
14 | 13 | rabex 5251 |
. . . 4
⊢ {𝑡 ∈ 𝒫
(Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)} ∈ V |
15 | 10, 11, 14 | fvmpt 6857 |
. . 3
⊢ (𝑀 ∈ Mnd →
(SubMnd‘𝑀) = {𝑡 ∈ 𝒫
(Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)}) |
16 | 15 | eleq2d 2824 |
. 2
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)})) |
17 | | eleq2 2827 |
. . . . 5
⊢ (𝑡 = 𝑆 → ((0g‘𝑀) ∈ 𝑡 ↔ (0g‘𝑀) ∈ 𝑆)) |
18 | | eleq2 2827 |
. . . . . . 7
⊢ (𝑡 = 𝑆 → ((𝑥(+g‘𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
19 | 18 | raleqbi1dv 3331 |
. . . . . 6
⊢ (𝑡 = 𝑆 → (∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
20 | 19 | raleqbi1dv 3331 |
. . . . 5
⊢ (𝑡 = 𝑆 → (∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
21 | 17, 20 | anbi12d 630 |
. . . 4
⊢ (𝑡 = 𝑆 → (((0g‘𝑀) ∈ 𝑡 ∧ ∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡) ↔ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
22 | 21 | elrab 3617 |
. . 3
⊢ (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧
((0g‘𝑀)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
23 | | issubm.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝑀) |
24 | 23 | sseq2i 3946 |
. . . . 5
⊢ (𝑆 ⊆ 𝐵 ↔ 𝑆 ⊆ (Base‘𝑀)) |
25 | | issubm.z |
. . . . . . 7
⊢ 0 =
(0g‘𝑀) |
26 | 25 | eleq1i 2829 |
. . . . . 6
⊢ ( 0 ∈ 𝑆 ↔
(0g‘𝑀)
∈ 𝑆) |
27 | | issubm.p |
. . . . . . . . 9
⊢ + =
(+g‘𝑀) |
28 | 27 | oveqi 7268 |
. . . . . . . 8
⊢ (𝑥 + 𝑦) = (𝑥(+g‘𝑀)𝑦) |
29 | 28 | eleq1i 2829 |
. . . . . . 7
⊢ ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) |
30 | 29 | 2ralbii 3091 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆) |
31 | 26, 30 | anbi12i 626 |
. . . . 5
⊢ (( 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) |
32 | 24, 31 | anbi12i 626 |
. . . 4
⊢ ((𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
33 | | 3anass 1093 |
. . . 4
⊢ ((𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆 ⊆ 𝐵 ∧ ( 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
34 | 12 | elpw2 5264 |
. . . . 5
⊢ (𝑆 ∈ 𝒫
(Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀)) |
35 | 34 | anbi1i 623 |
. . . 4
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧
((0g‘𝑀)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆))) |
36 | 32, 33, 35 | 3bitr4ri 303 |
. . 3
⊢ ((𝑆 ∈ 𝒫
(Base‘𝑀) ∧
((0g‘𝑀)
∈ 𝑆 ∧
∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥(+g‘𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) |
37 | 22, 36 | bitri 274 |
. 2
⊢ (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣
((0g‘𝑀)
∈ 𝑡 ∧
∀𝑥 ∈ 𝑡 ∀𝑦 ∈ 𝑡 (𝑥(+g‘𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) |
38 | 16, 37 | bitrdi 286 |
1
⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |