MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubm Structured version   Visualization version   GIF version

Theorem issubm 17554
Description: Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
Hypotheses
Ref Expression
issubm.b 𝐵 = (Base‘𝑀)
issubm.z 0 = (0g𝑀)
issubm.p + = (+g𝑀)
Assertion
Ref Expression
issubm (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Distinct variable groups:   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   + (𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem issubm
Dummy variables 𝑚 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6333 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
21pweqd 4303 . . . . 5 (𝑚 = 𝑀 → 𝒫 (Base‘𝑚) = 𝒫 (Base‘𝑀))
3 fveq2 6333 . . . . . . 7 (𝑚 = 𝑀 → (0g𝑚) = (0g𝑀))
43eleq1d 2835 . . . . . 6 (𝑚 = 𝑀 → ((0g𝑚) ∈ 𝑡 ↔ (0g𝑀) ∈ 𝑡))
5 fveq2 6333 . . . . . . . . 9 (𝑚 = 𝑀 → (+g𝑚) = (+g𝑀))
65oveqd 6812 . . . . . . . 8 (𝑚 = 𝑀 → (𝑥(+g𝑚)𝑦) = (𝑥(+g𝑀)𝑦))
76eleq1d 2835 . . . . . . 7 (𝑚 = 𝑀 → ((𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑡))
872ralbidv 3138 . . . . . 6 (𝑚 = 𝑀 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡))
94, 8anbi12d 616 . . . . 5 (𝑚 = 𝑀 → (((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡) ↔ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)))
102, 9rabeqbidv 3345 . . . 4 (𝑚 = 𝑀 → {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡)} = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)})
11 df-submnd 17543 . . . 4 SubMnd = (𝑚 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑚) ∣ ((0g𝑚) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑚)𝑦) ∈ 𝑡)})
12 fvex 6344 . . . . . 6 (Base‘𝑀) ∈ V
1312pwex 4982 . . . . 5 𝒫 (Base‘𝑀) ∈ V
1413rabex 4947 . . . 4 {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ∈ V
1510, 11, 14fvmpt 6426 . . 3 (𝑀 ∈ Mnd → (SubMnd‘𝑀) = {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)})
1615eleq2d 2836 . 2 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ 𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)}))
17 eleq2 2839 . . . . 5 (𝑡 = 𝑆 → ((0g𝑀) ∈ 𝑡 ↔ (0g𝑀) ∈ 𝑆))
18 eleq2 2839 . . . . . . 7 (𝑡 = 𝑆 → ((𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆))
1918raleqbi1dv 3295 . . . . . 6 (𝑡 = 𝑆 → (∀𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2019raleqbi1dv 3295 . . . . 5 (𝑡 = 𝑆 → (∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
2117, 20anbi12d 616 . . . 4 (𝑡 = 𝑆 → (((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡) ↔ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
2221elrab 3515 . . 3 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
23 issubm.b . . . . . 6 𝐵 = (Base‘𝑀)
2423sseq2i 3779 . . . . 5 (𝑆𝐵𝑆 ⊆ (Base‘𝑀))
25 issubm.z . . . . . . 7 0 = (0g𝑀)
2625eleq1i 2841 . . . . . 6 ( 0𝑆 ↔ (0g𝑀) ∈ 𝑆)
27 issubm.p . . . . . . . . 9 + = (+g𝑀)
2827oveqi 6808 . . . . . . . 8 (𝑥 + 𝑦) = (𝑥(+g𝑀)𝑦)
2928eleq1i 2841 . . . . . . 7 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑥(+g𝑀)𝑦) ∈ 𝑆)
30292ralbii 3130 . . . . . 6 (∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆 ↔ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)
3126, 30anbi12i 612 . . . . 5 (( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆))
3224, 31anbi12i 612 . . . 4 ((𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
33 3anass 1080 . . . 4 ((𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) ↔ (𝑆𝐵 ∧ ( 0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
3412elpw2 4960 . . . . 5 (𝑆 ∈ 𝒫 (Base‘𝑀) ↔ 𝑆 ⊆ (Base‘𝑀))
3534anbi1i 610 . . . 4 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)))
3632, 33, 353bitr4ri 293 . . 3 ((𝑆 ∈ 𝒫 (Base‘𝑀) ∧ ((0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥(+g𝑀)𝑦) ∈ 𝑆)) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
3722, 36bitri 264 . 2 (𝑆 ∈ {𝑡 ∈ 𝒫 (Base‘𝑀) ∣ ((0g𝑀) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑀)𝑦) ∈ 𝑡)} ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
3816, 37syl6bb 276 1 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  {crab 3065  wss 3723  𝒫 cpw 4298  cfv 6030  (class class class)co 6795  Basecbs 16063  +gcplusg 16148  0gc0g 16307  Mndcmnd 17501  SubMndcsubmnd 17541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-iota 5993  df-fun 6032  df-fv 6038  df-ov 6798  df-submnd 17543
This theorem is referenced by:  issubm2  17555  issubmd  17556  submcl  17560  mhmima  17570  mhmeql  17571  submacs  17572  gsumwspan  17590  frmdsssubm  17605  issubg3  17819  cntzsubm  17974  oppgsubm  17998  lsmsubm  18274  issubrg3  19017  xrge0subm  20001  cnsubmlem  20008  nn0srg  20030  rge0srg  20031  efsubm  24517  iistmd  30287  isdomn3  38308  mon1psubm  38310
  Copyright terms: Public domain W3C validator