MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  issubmd Structured version   Visualization version   GIF version

Theorem issubmd 18832
Description: Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
issubmd.b 𝐵 = (Base‘𝑀)
issubmd.p + = (+g𝑀)
issubmd.z 0 = (0g𝑀)
issubmd.m (𝜑𝑀 ∈ Mnd)
issubmd.cz (𝜑𝜒)
issubmd.cp ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
issubmd.ch (𝑧 = 0 → (𝜓𝜒))
issubmd.th (𝑧 = 𝑥 → (𝜓𝜃))
issubmd.ta (𝑧 = 𝑦 → (𝜓𝜏))
issubmd.et (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
Assertion
Ref Expression
issubmd (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦   𝜓,𝑥,𝑦   𝑧, +   𝑧, 0   𝜒,𝑧   𝜂,𝑧   𝜏,𝑧   𝜃,𝑧
Allowed substitution hints:   𝜑(𝑧)   𝜓(𝑧)   𝜒(𝑥,𝑦)   𝜃(𝑥,𝑦)   𝜏(𝑥,𝑦)   𝜂(𝑥,𝑦)   + (𝑥,𝑦)   𝑀(𝑧)   0 (𝑥,𝑦)

Proof of Theorem issubmd
StepHypRef Expression
1 ssrab2 4090 . . 3 {𝑧𝐵𝜓} ⊆ 𝐵
21a1i 11 . 2 (𝜑 → {𝑧𝐵𝜓} ⊆ 𝐵)
3 issubmd.ch . . 3 (𝑧 = 0 → (𝜓𝜒))
4 issubmd.m . . . 4 (𝜑𝑀 ∈ Mnd)
5 issubmd.b . . . . 5 𝐵 = (Base‘𝑀)
6 issubmd.z . . . . 5 0 = (0g𝑀)
75, 6mndidcl 18775 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
84, 7syl 17 . . 3 (𝜑0𝐵)
9 issubmd.cz . . 3 (𝜑𝜒)
103, 8, 9elrabd 3697 . 2 (𝜑0 ∈ {𝑧𝐵𝜓})
11 issubmd.th . . . . . 6 (𝑧 = 𝑥 → (𝜓𝜃))
1211elrab 3695 . . . . 5 (𝑥 ∈ {𝑧𝐵𝜓} ↔ (𝑥𝐵𝜃))
13 issubmd.ta . . . . . 6 (𝑧 = 𝑦 → (𝜓𝜏))
1413elrab 3695 . . . . 5 (𝑦 ∈ {𝑧𝐵𝜓} ↔ (𝑦𝐵𝜏))
1512, 14anbi12i 628 . . . 4 ((𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓}) ↔ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)))
16 issubmd.et . . . . 5 (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))
174adantr 480 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑀 ∈ Mnd)
18 simprll 779 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑥𝐵)
19 simprrl 781 . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝑦𝐵)
20 issubmd.p . . . . . . 7 + = (+g𝑀)
215, 20mndcl 18768 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
2217, 18, 19, 21syl3anc 1370 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ 𝐵)
23 an4 656 . . . . . 6 (((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏)) ↔ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏)))
24 issubmd.cp . . . . . 6 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)
2523, 24sylan2b 594 . . . . 5 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → 𝜂)
2616, 22, 25elrabd 3697 . . . 4 ((𝜑 ∧ ((𝑥𝐵𝜃) ∧ (𝑦𝐵𝜏))) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2715, 26sylan2b 594 . . 3 ((𝜑 ∧ (𝑥 ∈ {𝑧𝐵𝜓} ∧ 𝑦 ∈ {𝑧𝐵𝜓})) → (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
2827ralrimivva 3200 . 2 (𝜑 → ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})
295, 6, 20issubm 18829 . . 3 (𝑀 ∈ Mnd → ({𝑧𝐵𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵0 ∈ {𝑧𝐵𝜓} ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
304, 29syl 17 . 2 (𝜑 → ({𝑧𝐵𝜓} ∈ (SubMnd‘𝑀) ↔ ({𝑧𝐵𝜓} ⊆ 𝐵0 ∈ {𝑧𝐵𝜓} ∧ ∀𝑥 ∈ {𝑧𝐵𝜓}∀𝑦 ∈ {𝑧𝐵𝜓} (𝑥 + 𝑦) ∈ {𝑧𝐵𝜓})))
312, 10, 28, 30mpbir3and 1341 1 (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  {crab 3433  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760  SubMndcsubmnd 18808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810
This theorem is referenced by:  mndind  18854
  Copyright terms: Public domain W3C validator