| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oppgmndb | Structured version Visualization version GIF version | ||
| Description: Bidirectional form of oppgmnd 19259. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| Ref | Expression |
|---|---|
| oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
| Ref | Expression |
|---|---|
| oppgmndb | ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oppgbas.1 | . . 3 ⊢ 𝑂 = (oppg‘𝑅) | |
| 2 | 1 | oppgmnd 19259 | . 2 ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
| 3 | eqid 2730 | . . . 4 ⊢ (oppg‘𝑂) = (oppg‘𝑂) | |
| 4 | 3 | oppgmnd 19259 | . . 3 ⊢ (𝑂 ∈ Mnd → (oppg‘𝑂) ∈ Mnd) |
| 5 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 6 | 1, 5 | oppgbas 19256 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 7 | 3, 6 | oppgbas 19256 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppg‘𝑂)) |
| 8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppg‘𝑂))) |
| 9 | eqidd 2731 | . . . . 5 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
| 10 | eqid 2730 | . . . . . . . 8 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
| 11 | eqid 2730 | . . . . . . . 8 ⊢ (+g‘(oppg‘𝑂)) = (+g‘(oppg‘𝑂)) | |
| 12 | 10, 3, 11 | oppgplus 19254 | . . . . . . 7 ⊢ (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑦(+g‘𝑂)𝑥) |
| 13 | eqid 2730 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 14 | 13, 1, 10 | oppgplus 19254 | . . . . . . 7 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)𝑦) |
| 15 | 12, 14 | eqtri 2753 | . . . . . 6 ⊢ (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑥(+g‘𝑅)𝑦) |
| 16 | 15 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑥(+g‘𝑅)𝑦)) |
| 17 | 8, 9, 16 | mndpropd 18659 | . . . 4 ⊢ (⊤ → ((oppg‘𝑂) ∈ Mnd ↔ 𝑅 ∈ Mnd)) |
| 18 | 17 | mptru 1548 | . . 3 ⊢ ((oppg‘𝑂) ∈ Mnd ↔ 𝑅 ∈ Mnd) |
| 19 | 4, 18 | sylib 218 | . 2 ⊢ (𝑂 ∈ Mnd → 𝑅 ∈ Mnd) |
| 20 | 2, 19 | impbii 209 | 1 ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2110 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 +gcplusg 17153 Mndcmnd 18634 oppgcoppg 19250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-tpos 8151 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-oppg 19251 |
| This theorem is referenced by: oppgsubm 19267 |
| Copyright terms: Public domain | W3C validator |