![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppgmndb | Structured version Visualization version GIF version |
Description: Bidirectional form of oppgmnd 19263. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
Ref | Expression |
---|---|
oppgbas.1 | ⊢ 𝑂 = (oppg‘𝑅) |
Ref | Expression |
---|---|
oppgmndb | ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppgbas.1 | . . 3 ⊢ 𝑂 = (oppg‘𝑅) | |
2 | 1 | oppgmnd 19263 | . 2 ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) |
3 | eqid 2731 | . . . 4 ⊢ (oppg‘𝑂) = (oppg‘𝑂) | |
4 | 3 | oppgmnd 19263 | . . 3 ⊢ (𝑂 ∈ Mnd → (oppg‘𝑂) ∈ Mnd) |
5 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
6 | 1, 5 | oppgbas 19258 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑂) |
7 | 3, 6 | oppgbas 19258 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘(oppg‘𝑂)) |
8 | 7 | a1i 11 | . . . . 5 ⊢ (⊤ → (Base‘𝑅) = (Base‘(oppg‘𝑂))) |
9 | eqidd 2732 | . . . . 5 ⊢ (⊤ → (Base‘𝑅) = (Base‘𝑅)) | |
10 | eqid 2731 | . . . . . . . 8 ⊢ (+g‘𝑂) = (+g‘𝑂) | |
11 | eqid 2731 | . . . . . . . 8 ⊢ (+g‘(oppg‘𝑂)) = (+g‘(oppg‘𝑂)) | |
12 | 10, 3, 11 | oppgplus 19255 | . . . . . . 7 ⊢ (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑦(+g‘𝑂)𝑥) |
13 | eqid 2731 | . . . . . . . 8 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
14 | 13, 1, 10 | oppgplus 19255 | . . . . . . 7 ⊢ (𝑦(+g‘𝑂)𝑥) = (𝑥(+g‘𝑅)𝑦) |
15 | 12, 14 | eqtri 2759 | . . . . . 6 ⊢ (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑥(+g‘𝑅)𝑦) |
16 | 15 | a1i 11 | . . . . 5 ⊢ ((⊤ ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅))) → (𝑥(+g‘(oppg‘𝑂))𝑦) = (𝑥(+g‘𝑅)𝑦)) |
17 | 8, 9, 16 | mndpropd 18685 | . . . 4 ⊢ (⊤ → ((oppg‘𝑂) ∈ Mnd ↔ 𝑅 ∈ Mnd)) |
18 | 17 | mptru 1547 | . . 3 ⊢ ((oppg‘𝑂) ∈ Mnd ↔ 𝑅 ∈ Mnd) |
19 | 4, 18 | sylib 217 | . 2 ⊢ (𝑂 ∈ Mnd → 𝑅 ∈ Mnd) |
20 | 2, 19 | impbii 208 | 1 ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2105 ‘cfv 6543 (class class class)co 7412 Basecbs 17149 +gcplusg 17202 Mndcmnd 18660 oppgcoppg 19251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-tpos 8215 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-oppg 19252 |
This theorem is referenced by: oppgsubm 19271 |
Copyright terms: Public domain | W3C validator |