Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mntf Structured version   Visualization version   GIF version

Theorem mntf 32707
Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.)
Hypotheses
Ref Expression
mntf.1 𝐴 = (Baseβ€˜π‘‰)
mntf.2 𝐡 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
mntf ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ ∧ 𝐹 ∈ (𝑉Monotπ‘Š)) β†’ 𝐹:𝐴⟢𝐡)

Proof of Theorem mntf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mntf.1 . . . 4 𝐴 = (Baseβ€˜π‘‰)
2 mntf.2 . . . 4 𝐡 = (Baseβ€˜π‘Š)
3 eqid 2728 . . . 4 (leβ€˜π‘‰) = (leβ€˜π‘‰)
4 eqid 2728 . . . 4 (leβ€˜π‘Š) = (leβ€˜π‘Š)
51, 2, 3, 4ismnt 32705 . . 3 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝐹 ∈ (𝑉Monotπ‘Š) ↔ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯(leβ€˜π‘‰)𝑦 β†’ (πΉβ€˜π‘₯)(leβ€˜π‘Š)(πΉβ€˜π‘¦)))))
65biimp3a 1466 . 2 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ ∧ 𝐹 ∈ (𝑉Monotπ‘Š)) β†’ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯(leβ€˜π‘‰)𝑦 β†’ (πΉβ€˜π‘₯)(leβ€˜π‘Š)(πΉβ€˜π‘¦))))
76simpld 494 1 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ ∧ 𝐹 ∈ (𝑉Monotπ‘Š)) β†’ 𝐹:𝐴⟢𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3057   class class class wbr 5143  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7415  Basecbs 17174  lecple 17234  Monotcmnt 32700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5294  ax-nul 5301  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3472  df-sbc 3776  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-br 5144  df-opab 5206  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7418  df-oprab 7419  df-mpo 7420  df-map 8841  df-mnt 32702
This theorem is referenced by:  mgcmntco  32716
  Copyright terms: Public domain W3C validator