Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mntf Structured version   Visualization version   GIF version

Theorem mntf 32142
Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.)
Hypotheses
Ref Expression
mntf.1 𝐴 = (Baseβ€˜π‘‰)
mntf.2 𝐡 = (Baseβ€˜π‘Š)
Assertion
Ref Expression
mntf ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ ∧ 𝐹 ∈ (𝑉Monotπ‘Š)) β†’ 𝐹:𝐴⟢𝐡)

Proof of Theorem mntf
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mntf.1 . . . 4 𝐴 = (Baseβ€˜π‘‰)
2 mntf.2 . . . 4 𝐡 = (Baseβ€˜π‘Š)
3 eqid 2732 . . . 4 (leβ€˜π‘‰) = (leβ€˜π‘‰)
4 eqid 2732 . . . 4 (leβ€˜π‘Š) = (leβ€˜π‘Š)
51, 2, 3, 4ismnt 32140 . . 3 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝐹 ∈ (𝑉Monotπ‘Š) ↔ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯(leβ€˜π‘‰)𝑦 β†’ (πΉβ€˜π‘₯)(leβ€˜π‘Š)(πΉβ€˜π‘¦)))))
65biimp3a 1469 . 2 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ ∧ 𝐹 ∈ (𝑉Monotπ‘Š)) β†’ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯(leβ€˜π‘‰)𝑦 β†’ (πΉβ€˜π‘₯)(leβ€˜π‘Š)(πΉβ€˜π‘¦))))
76simpld 495 1 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ ∧ 𝐹 ∈ (𝑉Monotπ‘Š)) β†’ 𝐹:𝐴⟢𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061   class class class wbr 5147  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  Monotcmnt 32135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-mnt 32137
This theorem is referenced by:  mgcmntco  32151
  Copyright terms: Public domain W3C validator