Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mntf Structured version   Visualization version   GIF version

Theorem mntf 32995
Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.)
Hypotheses
Ref Expression
mntf.1 𝐴 = (Base‘𝑉)
mntf.2 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
mntf ((𝑉𝑋𝑊𝑌𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴𝐵)

Proof of Theorem mntf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mntf.1 . . . 4 𝐴 = (Base‘𝑉)
2 mntf.2 . . . 4 𝐵 = (Base‘𝑊)
3 eqid 2733 . . . 4 (le‘𝑉) = (le‘𝑉)
4 eqid 2733 . . . 4 (le‘𝑊) = (le‘𝑊)
51, 2, 3, 4ismnt 32993 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)))))
65biimp3a 1471 . 2 ((𝑉𝑋𝑊𝑌𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦))))
76simpld 494 1 ((𝑉𝑋𝑊𝑌𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  wral 3048   class class class wbr 5095  wf 6485  cfv 6489  (class class class)co 7355  Basecbs 17127  lecple 17175  Monotcmnt 32988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761  df-mnt 32990
This theorem is referenced by:  mgcmntco  33004
  Copyright terms: Public domain W3C validator