![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mntf | Structured version Visualization version GIF version |
Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
mntf.1 | β’ π΄ = (Baseβπ) |
mntf.2 | β’ π΅ = (Baseβπ) |
Ref | Expression |
---|---|
mntf | β’ ((π β π β§ π β π β§ πΉ β (πMonotπ)) β πΉ:π΄βΆπ΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mntf.1 | . . . 4 β’ π΄ = (Baseβπ) | |
2 | mntf.2 | . . . 4 β’ π΅ = (Baseβπ) | |
3 | eqid 2728 | . . . 4 β’ (leβπ) = (leβπ) | |
4 | eqid 2728 | . . . 4 β’ (leβπ) = (leβπ) | |
5 | 1, 2, 3, 4 | ismnt 32705 | . . 3 β’ ((π β π β§ π β π) β (πΉ β (πMonotπ) β (πΉ:π΄βΆπ΅ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯(leβπ)π¦ β (πΉβπ₯)(leβπ)(πΉβπ¦))))) |
6 | 5 | biimp3a 1466 | . 2 β’ ((π β π β§ π β π β§ πΉ β (πMonotπ)) β (πΉ:π΄βΆπ΅ β§ βπ₯ β π΄ βπ¦ β π΄ (π₯(leβπ)π¦ β (πΉβπ₯)(leβπ)(πΉβπ¦)))) |
7 | 6 | simpld 494 | 1 β’ ((π β π β§ π β π β§ πΉ β (πMonotπ)) β πΉ:π΄βΆπ΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1085 = wceq 1534 β wcel 2099 βwral 3057 class class class wbr 5143 βΆwf 6539 βcfv 6543 (class class class)co 7415 Basecbs 17174 lecple 17234 Monotcmnt 32700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-br 5144 df-opab 5206 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7418 df-oprab 7419 df-mpo 7420 df-map 8841 df-mnt 32702 |
This theorem is referenced by: mgcmntco 32716 |
Copyright terms: Public domain | W3C validator |