Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mntf Structured version   Visualization version   GIF version

Theorem mntf 32855
Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.)
Hypotheses
Ref Expression
mntf.1 𝐴 = (Base‘𝑉)
mntf.2 𝐵 = (Base‘𝑊)
Assertion
Ref Expression
mntf ((𝑉𝑋𝑊𝑌𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴𝐵)

Proof of Theorem mntf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mntf.1 . . . 4 𝐴 = (Base‘𝑉)
2 mntf.2 . . . 4 𝐵 = (Base‘𝑊)
3 eqid 2726 . . . 4 (le‘𝑉) = (le‘𝑉)
4 eqid 2726 . . . 4 (le‘𝑊) = (le‘𝑊)
51, 2, 3, 4ismnt 32853 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦)))))
65biimp3a 1466 . 2 ((𝑉𝑋𝑊𝑌𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥(le‘𝑉)𝑦 → (𝐹𝑥)(le‘𝑊)(𝐹𝑦))))
76simpld 493 1 ((𝑉𝑋𝑊𝑌𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051   class class class wbr 5153  wf 6550  cfv 6554  (class class class)co 7424  Basecbs 17213  lecple 17273  Monotcmnt 32848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-fv 6562  df-ov 7427  df-oprab 7428  df-mpo 7429  df-map 8857  df-mnt 32850
This theorem is referenced by:  mgcmntco  32864
  Copyright terms: Public domain W3C validator