![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mntf | Structured version Visualization version GIF version |
Description: A monotone function is a function. (Contributed by Thierry Arnoux, 24-Apr-2024.) |
Ref | Expression |
---|---|
mntf.1 | ⊢ 𝐴 = (Base‘𝑉) |
mntf.2 | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
mntf | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mntf.1 | . . . 4 ⊢ 𝐴 = (Base‘𝑉) | |
2 | mntf.2 | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | eqid 2726 | . . . 4 ⊢ (le‘𝑉) = (le‘𝑉) | |
4 | eqid 2726 | . . . 4 ⊢ (le‘𝑊) = (le‘𝑊) | |
5 | 1, 2, 3, 4 | ismnt 32853 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦))))) |
6 | 5 | biimp3a 1466 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥(le‘𝑉)𝑦 → (𝐹‘𝑥)(le‘𝑊)(𝐹‘𝑦)))) |
7 | 6 | simpld 493 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌 ∧ 𝐹 ∈ (𝑉Monot𝑊)) → 𝐹:𝐴⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1534 ∈ wcel 2099 ∀wral 3051 class class class wbr 5153 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 lecple 17273 Monotcmnt 32848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8857 df-mnt 32850 |
This theorem is referenced by: mgcmntco 32864 |
Copyright terms: Public domain | W3C validator |