![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismnt | Structured version Visualization version GIF version |
Description: Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
Ref | Expression |
---|---|
mntoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mntoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mntoval.3 | ⊢ ≤ = (le‘𝑉) |
mntoval.4 | ⊢ ≲ = (le‘𝑊) |
Ref | Expression |
---|---|
ismnt | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mntoval.1 | . . . . 5 ⊢ 𝐴 = (Base‘𝑉) | |
2 | mntoval.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | mntoval.3 | . . . . 5 ⊢ ≤ = (le‘𝑉) | |
4 | mntoval.4 | . . . . 5 ⊢ ≲ = (le‘𝑊) | |
5 | 1, 2, 3, 4 | mntoval 32956 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) |
6 | 5 | eleq2d 2824 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))})) |
7 | fveq1 6905 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
8 | fveq1 6905 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
9 | 7, 8 | breq12d 5160 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ≲ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
11 | 10 | 2ralbidv 3218 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
12 | 11 | elrab 3694 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))} ↔ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
13 | 6, 12 | bitrdi 287 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
14 | 2 | fvexi 6920 | . . . 4 ⊢ 𝐵 ∈ V |
15 | 1 | fvexi 6920 | . . . 4 ⊢ 𝐴 ∈ V |
16 | 14, 15 | elmap 8909 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵) |
17 | 16 | anbi1i 624 | . 2 ⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
18 | 13, 17 | bitrdi 287 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 {crab 3432 class class class wbr 5147 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ↑m cmap 8864 Basecbs 17244 lecple 17304 Monotcmnt 32952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-map 8866 df-mnt 32954 |
This theorem is referenced by: ismntd 32958 mntf 32959 mgcmnt1d 32971 mgcmnt2d 32972 |
Copyright terms: Public domain | W3C validator |