| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismnt | Structured version Visualization version GIF version | ||
| Description: Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
| Ref | Expression |
|---|---|
| mntoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
| mntoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
| mntoval.3 | ⊢ ≤ = (le‘𝑉) |
| mntoval.4 | ⊢ ≲ = (le‘𝑊) |
| Ref | Expression |
|---|---|
| ismnt | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mntoval.1 | . . . . 5 ⊢ 𝐴 = (Base‘𝑉) | |
| 2 | mntoval.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | mntoval.3 | . . . . 5 ⊢ ≤ = (le‘𝑉) | |
| 4 | mntoval.4 | . . . . 5 ⊢ ≲ = (le‘𝑊) | |
| 5 | 1, 2, 3, 4 | mntoval 32967 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) |
| 6 | 5 | eleq2d 2821 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))})) |
| 7 | fveq1 6880 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
| 8 | fveq1 6880 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
| 9 | 7, 8 | breq12d 5137 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ≲ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
| 10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
| 11 | 10 | 2ralbidv 3209 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
| 12 | 11 | elrab 3676 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))} ↔ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
| 13 | 6, 12 | bitrdi 287 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
| 14 | 2 | fvexi 6895 | . . . 4 ⊢ 𝐵 ∈ V |
| 15 | 1 | fvexi 6895 | . . . 4 ⊢ 𝐴 ∈ V |
| 16 | 14, 15 | elmap 8890 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵) |
| 17 | 16 | anbi1i 624 | . 2 ⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
| 18 | 13, 17 | bitrdi 287 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 {crab 3420 class class class wbr 5124 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ↑m cmap 8845 Basecbs 17233 lecple 17283 Monotcmnt 32963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-mnt 32965 |
| This theorem is referenced by: ismntd 32969 mntf 32970 mgcmnt1d 32982 mgcmnt2d 32983 |
| Copyright terms: Public domain | W3C validator |