Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismnt Structured version   Visualization version   GIF version

Theorem ismnt 32645
Description: Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.)
Hypotheses
Ref Expression
mntoval.1 𝐴 = (Baseβ€˜π‘‰)
mntoval.2 𝐡 = (Baseβ€˜π‘Š)
mntoval.3 ≀ = (leβ€˜π‘‰)
mntoval.4 ≲ = (leβ€˜π‘Š)
Assertion
Ref Expression
ismnt ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝐹 ∈ (𝑉Monotπ‘Š) ↔ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦)))))
Distinct variable groups:   π‘₯,𝐴,𝑦   π‘₯,𝑉,𝑦   π‘₯,π‘Š,𝑦   π‘₯,𝐹,𝑦
Allowed substitution hints:   𝐡(π‘₯,𝑦)   ≀ (π‘₯,𝑦)   𝑋(π‘₯,𝑦)   π‘Œ(π‘₯,𝑦)   ≲ (π‘₯,𝑦)

Proof of Theorem ismnt
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mntoval.1 . . . . 5 𝐴 = (Baseβ€˜π‘‰)
2 mntoval.2 . . . . 5 𝐡 = (Baseβ€˜π‘Š)
3 mntoval.3 . . . . 5 ≀ = (leβ€˜π‘‰)
4 mntoval.4 . . . . 5 ≲ = (leβ€˜π‘Š)
51, 2, 3, 4mntoval 32644 . . . 4 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝑉Monotπ‘Š) = {𝑓 ∈ (𝐡 ↑m 𝐴) ∣ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (π‘“β€˜π‘₯) ≲ (π‘“β€˜π‘¦))})
65eleq2d 2811 . . 3 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝐹 ∈ (𝑉Monotπ‘Š) ↔ 𝐹 ∈ {𝑓 ∈ (𝐡 ↑m 𝐴) ∣ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (π‘“β€˜π‘₯) ≲ (π‘“β€˜π‘¦))}))
7 fveq1 6881 . . . . . . 7 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘₯) = (πΉβ€˜π‘₯))
8 fveq1 6881 . . . . . . 7 (𝑓 = 𝐹 β†’ (π‘“β€˜π‘¦) = (πΉβ€˜π‘¦))
97, 8breq12d 5152 . . . . . 6 (𝑓 = 𝐹 β†’ ((π‘“β€˜π‘₯) ≲ (π‘“β€˜π‘¦) ↔ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦)))
109imbi2d 340 . . . . 5 (𝑓 = 𝐹 β†’ ((π‘₯ ≀ 𝑦 β†’ (π‘“β€˜π‘₯) ≲ (π‘“β€˜π‘¦)) ↔ (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦))))
11102ralbidv 3210 . . . 4 (𝑓 = 𝐹 β†’ (βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (π‘“β€˜π‘₯) ≲ (π‘“β€˜π‘¦)) ↔ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦))))
1211elrab 3676 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐡 ↑m 𝐴) ∣ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (π‘“β€˜π‘₯) ≲ (π‘“β€˜π‘¦))} ↔ (𝐹 ∈ (𝐡 ↑m 𝐴) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦))))
136, 12bitrdi 287 . 2 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝐹 ∈ (𝑉Monotπ‘Š) ↔ (𝐹 ∈ (𝐡 ↑m 𝐴) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦)))))
142fvexi 6896 . . . 4 𝐡 ∈ V
151fvexi 6896 . . . 4 𝐴 ∈ V
1614, 15elmap 8862 . . 3 (𝐹 ∈ (𝐡 ↑m 𝐴) ↔ 𝐹:𝐴⟢𝐡)
1716anbi1i 623 . 2 ((𝐹 ∈ (𝐡 ↑m 𝐴) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦))) ↔ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦))))
1813, 17bitrdi 287 1 ((𝑉 ∈ 𝑋 ∧ π‘Š ∈ π‘Œ) β†’ (𝐹 ∈ (𝑉Monotπ‘Š) ↔ (𝐹:𝐴⟢𝐡 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ ≀ 𝑦 β†’ (πΉβ€˜π‘₯) ≲ (πΉβ€˜π‘¦)))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  {crab 3424   class class class wbr 5139  βŸΆwf 6530  β€˜cfv 6534  (class class class)co 7402   ↑m cmap 8817  Basecbs 17149  lecple 17209  Monotcmnt 32640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-map 8819  df-mnt 32642
This theorem is referenced by:  ismntd  32646  mntf  32647  mgcmnt1d  32659  mgcmnt2d  32660
  Copyright terms: Public domain W3C validator