![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismnt | Structured version Visualization version GIF version |
Description: Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
Ref | Expression |
---|---|
mntoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mntoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mntoval.3 | ⊢ ≤ = (le‘𝑉) |
mntoval.4 | ⊢ ≲ = (le‘𝑊) |
Ref | Expression |
---|---|
ismnt | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mntoval.1 | . . . . 5 ⊢ 𝐴 = (Base‘𝑉) | |
2 | mntoval.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | mntoval.3 | . . . . 5 ⊢ ≤ = (le‘𝑉) | |
4 | mntoval.4 | . . . . 5 ⊢ ≲ = (le‘𝑊) | |
5 | 1, 2, 3, 4 | mntoval 32852 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) |
6 | 5 | eleq2d 2812 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))})) |
7 | fveq1 6900 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
8 | fveq1 6900 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
9 | 7, 8 | breq12d 5166 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ≲ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
10 | 9 | imbi2d 339 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
11 | 10 | 2ralbidv 3209 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
12 | 11 | elrab 3681 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))} ↔ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
13 | 6, 12 | bitrdi 286 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
14 | 2 | fvexi 6915 | . . . 4 ⊢ 𝐵 ∈ V |
15 | 1 | fvexi 6915 | . . . 4 ⊢ 𝐴 ∈ V |
16 | 14, 15 | elmap 8900 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵) |
17 | 16 | anbi1i 622 | . 2 ⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
18 | 13, 17 | bitrdi 286 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 {crab 3419 class class class wbr 5153 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 ↑m cmap 8855 Basecbs 17213 lecple 17273 Monotcmnt 32848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8857 df-mnt 32850 |
This theorem is referenced by: ismntd 32854 mntf 32855 mgcmnt1d 32867 mgcmnt2d 32868 |
Copyright terms: Public domain | W3C validator |