Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ismnt | Structured version Visualization version GIF version |
Description: Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.) |
Ref | Expression |
---|---|
mntoval.1 | ⊢ 𝐴 = (Base‘𝑉) |
mntoval.2 | ⊢ 𝐵 = (Base‘𝑊) |
mntoval.3 | ⊢ ≤ = (le‘𝑉) |
mntoval.4 | ⊢ ≲ = (le‘𝑊) |
Ref | Expression |
---|---|
ismnt | ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mntoval.1 | . . . . 5 ⊢ 𝐴 = (Base‘𝑉) | |
2 | mntoval.2 | . . . . 5 ⊢ 𝐵 = (Base‘𝑊) | |
3 | mntoval.3 | . . . . 5 ⊢ ≤ = (le‘𝑉) | |
4 | mntoval.4 | . . . . 5 ⊢ ≲ = (le‘𝑊) | |
5 | 1, 2, 3, 4 | mntoval 31162 | . . . 4 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))}) |
6 | 5 | eleq2d 2824 | . . 3 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))})) |
7 | fveq1 6755 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
8 | fveq1 6755 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
9 | 7, 8 | breq12d 5083 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ≲ (𝑓‘𝑦) ↔ (𝐹‘𝑥) ≲ (𝐹‘𝑦))) |
10 | 9 | imbi2d 340 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)) ↔ (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
11 | 10 | 2ralbidv 3122 | . . . 4 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦)) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
12 | 11 | elrab 3617 | . . 3 ⊢ (𝐹 ∈ {𝑓 ∈ (𝐵 ↑m 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝑓‘𝑥) ≲ (𝑓‘𝑦))} ↔ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
13 | 6, 12 | bitrdi 286 | . 2 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
14 | 2 | fvexi 6770 | . . . 4 ⊢ 𝐵 ∈ V |
15 | 1 | fvexi 6770 | . . . 4 ⊢ 𝐴 ∈ V |
16 | 14, 15 | elmap 8617 | . . 3 ⊢ (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵) |
17 | 16 | anbi1i 623 | . 2 ⊢ ((𝐹 ∈ (𝐵 ↑m 𝐴) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦)))) |
18 | 13, 17 | bitrdi 286 | 1 ⊢ ((𝑉 ∈ 𝑋 ∧ 𝑊 ∈ 𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≤ 𝑦 → (𝐹‘𝑥) ≲ (𝐹‘𝑦))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 class class class wbr 5070 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 lecple 16895 Monotcmnt 31158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-map 8575 df-mnt 31160 |
This theorem is referenced by: ismntd 31164 mntf 31165 mgcmnt1d 31177 mgcmnt2d 31178 |
Copyright terms: Public domain | W3C validator |