Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismnt Structured version   Visualization version   GIF version

Theorem ismnt 32964
Description: Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.)
Hypotheses
Ref Expression
mntoval.1 𝐴 = (Base‘𝑉)
mntoval.2 𝐵 = (Base‘𝑊)
mntoval.3 = (le‘𝑉)
mntoval.4 = (le‘𝑊)
Assertion
Ref Expression
ismnt ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem ismnt
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mntoval.1 . . . . 5 𝐴 = (Base‘𝑉)
2 mntoval.2 . . . . 5 𝐵 = (Base‘𝑊)
3 mntoval.3 . . . . 5 = (le‘𝑉)
4 mntoval.4 . . . . 5 = (le‘𝑊)
51, 2, 3, 4mntoval 32963 . . . 4 ((𝑉𝑋𝑊𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦))})
65eleq2d 2817 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦))}))
7 fveq1 6821 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
8 fveq1 6821 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
97, 8breq12d 5102 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦) ↔ (𝐹𝑥) (𝐹𝑦)))
109imbi2d 340 . . . . 5 (𝑓 = 𝐹 → ((𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦)) ↔ (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
11102ralbidv 3196 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
1211elrab 3642 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦))} ↔ (𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
136, 12bitrdi 287 . 2 ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
142fvexi 6836 . . . 4 𝐵 ∈ V
151fvexi 6836 . . . 4 𝐴 ∈ V
1614, 15elmap 8795 . . 3 (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵)
1716anbi1i 624 . 2 ((𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
1813, 17bitrdi 287 1 ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  {crab 3395   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Basecbs 17120  lecple 17168  Monotcmnt 32959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-mnt 32961
This theorem is referenced by:  ismntd  32965  mntf  32966  mgcmnt1d  32978  mgcmnt2d  32979
  Copyright terms: Public domain W3C validator