Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismnt Structured version   Visualization version   GIF version

Theorem ismnt 32968
Description: Express the statement "𝐹 is monotone". (Contributed by Thierry Arnoux, 23-Apr-2024.)
Hypotheses
Ref Expression
mntoval.1 𝐴 = (Base‘𝑉)
mntoval.2 𝐵 = (Base‘𝑊)
mntoval.3 = (le‘𝑉)
mntoval.4 = (le‘𝑊)
Assertion
Ref Expression
ismnt ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦   𝑥,𝑊,𝑦   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   (𝑥,𝑦)   𝑋(𝑥,𝑦)   𝑌(𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem ismnt
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 mntoval.1 . . . . 5 𝐴 = (Base‘𝑉)
2 mntoval.2 . . . . 5 𝐵 = (Base‘𝑊)
3 mntoval.3 . . . . 5 = (le‘𝑉)
4 mntoval.4 . . . . 5 = (le‘𝑊)
51, 2, 3, 4mntoval 32967 . . . 4 ((𝑉𝑋𝑊𝑌) → (𝑉Monot𝑊) = {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦))})
65eleq2d 2821 . . 3 ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ 𝐹 ∈ {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦))}))
7 fveq1 6880 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
8 fveq1 6880 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑦) = (𝐹𝑦))
97, 8breq12d 5137 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) (𝑓𝑦) ↔ (𝐹𝑥) (𝐹𝑦)))
109imbi2d 340 . . . . 5 (𝑓 = 𝐹 → ((𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦)) ↔ (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
11102ralbidv 3209 . . . 4 (𝑓 = 𝐹 → (∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
1211elrab 3676 . . 3 (𝐹 ∈ {𝑓 ∈ (𝐵m 𝐴) ∣ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝑓𝑥) (𝑓𝑦))} ↔ (𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
136, 12bitrdi 287 . 2 ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
142fvexi 6895 . . . 4 𝐵 ∈ V
151fvexi 6895 . . . 4 𝐴 ∈ V
1614, 15elmap 8890 . . 3 (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵)
1716anbi1i 624 . 2 ((𝐹 ∈ (𝐵m 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦))))
1813, 17bitrdi 287 1 ((𝑉𝑋𝑊𝑌) → (𝐹 ∈ (𝑉Monot𝑊) ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥 𝑦 → (𝐹𝑥) (𝐹𝑦)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  {crab 3420   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  Basecbs 17233  lecple 17283  Monotcmnt 32963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-map 8847  df-mnt 32965
This theorem is referenced by:  ismntd  32969  mntf  32970  mgcmnt1d  32982  mgcmnt2d  32983
  Copyright terms: Public domain W3C validator