| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsn | Structured version Visualization version GIF version | ||
| Description: There is exactly one function into a singleton, assuming ax-rep 5229. See eufsn2 48804 for different axiom requirements. If existence is not needed, use mofsn 48805 or mofsn2 48806 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| eufsn.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| eufsn | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsn.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | eufsn.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | fconstmpt 5693 | . . . 4 ⊢ (𝐴 × {𝐵}) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 4 | mptexg 7177 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ V) | |
| 5 | 3, 4 | eqeltrid 2832 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 × {𝐵}) ∈ V) |
| 6 | 2, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ V) |
| 7 | 1, 6 | eufsnlem 48802 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!weu 2561 Vcvv 3444 {csn 4585 ↦ cmpt 5183 × cxp 5629 ⟶wf 6495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |