| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsn2 | Structured version Visualization version GIF version | ||
| Description: There is exactly one function into a singleton, assuming ax-pow 5307 and ax-un 7677. Variant of eufsn 49003. If existence is not needed, use mofsn 49005 or mofsn2 49006 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| eufsn.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| eufsn2 | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsn.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | eufsn.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | snex 5378 | . . 3 ⊢ {𝐵} ∈ V | |
| 4 | xpexg 7692 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐵} ∈ V) → (𝐴 × {𝐵}) ∈ V) | |
| 5 | 2, 3, 4 | sylancl 586 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ V) |
| 6 | 1, 5 | eufsnlem 49002 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ∃!weu 2565 Vcvv 3437 {csn 4577 × cxp 5619 ⟶wf 6485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |