Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eufsn2 Structured version   Visualization version   GIF version

Theorem eufsn2 49004
Description: There is exactly one function into a singleton, assuming ax-pow 5307 and ax-un 7677. Variant of eufsn 49003. If existence is not needed, use mofsn 49005 or mofsn2 49006 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
eufsn.1 (𝜑𝐵𝑊)
eufsn.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
eufsn2 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem eufsn2
StepHypRef Expression
1 eufsn.1 . 2 (𝜑𝐵𝑊)
2 eufsn.2 . . 3 (𝜑𝐴𝑉)
3 snex 5378 . . 3 {𝐵} ∈ V
4 xpexg 7692 . . 3 ((𝐴𝑉 ∧ {𝐵} ∈ V) → (𝐴 × {𝐵}) ∈ V)
52, 3, 4sylancl 586 . 2 (𝜑 → (𝐴 × {𝐵}) ∈ V)
61, 5eufsnlem 49002 1 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  ∃!weu 2565  Vcvv 3437  {csn 4577   × cxp 5619  wf 6485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator