Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eufsn2 Structured version   Visualization version   GIF version

Theorem eufsn2 48710
Description: There is exactly one function into a singleton, assuming ax-pow 5345 and ax-un 7737. Variant of eufsn 48709. If existence is not needed, use mofsn 48711 or mofsn2 48712 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
eufsn.1 (𝜑𝐵𝑊)
eufsn.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
eufsn2 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem eufsn2
StepHypRef Expression
1 eufsn.1 . 2 (𝜑𝐵𝑊)
2 eufsn.2 . . 3 (𝜑𝐴𝑉)
3 snex 5416 . . 3 {𝐵} ∈ V
4 xpexg 7752 . . 3 ((𝐴𝑉 ∧ {𝐵} ∈ V) → (𝐴 × {𝐵}) ∈ V)
52, 3, 4sylancl 586 . 2 (𝜑 → (𝐴 × {𝐵}) ∈ V)
61, 5eufsnlem 48708 1 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2107  ∃!weu 2566  Vcvv 3463  {csn 4606   × cxp 5663  wf 6537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator