Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eufsn2 Structured version   Visualization version   GIF version

Theorem eufsn2 46058
Description: There is exactly one function into a singleton, assuming ax-pow 5283 and ax-un 7566. Variant of eufsn 46057. If existence is not needed, use mofsn 46059 or mofsn2 46060 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
eufsn.1 (𝜑𝐵𝑊)
eufsn.2 (𝜑𝐴𝑉)
Assertion
Ref Expression
eufsn2 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Distinct variable groups:   𝐴,𝑓   𝐵,𝑓   𝜑,𝑓
Allowed substitution hints:   𝑉(𝑓)   𝑊(𝑓)

Proof of Theorem eufsn2
StepHypRef Expression
1 eufsn.1 . 2 (𝜑𝐵𝑊)
2 eufsn.2 . . 3 (𝜑𝐴𝑉)
3 snex 5349 . . 3 {𝐵} ∈ V
4 xpexg 7578 . . 3 ((𝐴𝑉 ∧ {𝐵} ∈ V) → (𝐴 × {𝐵}) ∈ V)
52, 3, 4sylancl 585 . 2 (𝜑 → (𝐴 × {𝐵}) ∈ V)
61, 5eufsnlem 46056 1 (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  ∃!weu 2568  Vcvv 3422  {csn 4558   × cxp 5578  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator