| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsn2 | Structured version Visualization version GIF version | ||
| Description: There is exactly one function into a singleton, assuming ax-pow 5323 and ax-un 7714. Variant of eufsn 48834. If existence is not needed, use mofsn 48836 or mofsn2 48837 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.) |
| Ref | Expression |
|---|---|
| eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| eufsn.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| eufsn2 | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eufsn.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | eufsn.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 3 | snex 5394 | . . 3 ⊢ {𝐵} ∈ V | |
| 4 | xpexg 7729 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐵} ∈ V) → (𝐴 × {𝐵}) ∈ V) | |
| 5 | 2, 3, 4 | sylancl 586 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ V) |
| 6 | 1, 5 | eufsnlem 48833 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∃!weu 2562 Vcvv 3450 {csn 4592 × cxp 5639 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |