![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eufsn2 | Structured version Visualization version GIF version |
Description: There is exactly one function into a singleton, assuming ax-pow 5362 and ax-un 7721. Variant of eufsn 47461. If existence is not needed, use mofsn 47463 or mofsn2 47464 for fewer axiom assumptions. (Contributed by Zhi Wang, 19-Sep-2024.) |
Ref | Expression |
---|---|
eufsn.1 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
eufsn.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
Ref | Expression |
---|---|
eufsn2 | ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eufsn.1 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
2 | eufsn.2 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | snex 5430 | . . 3 ⊢ {𝐵} ∈ V | |
4 | xpexg 7733 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ {𝐵} ∈ V) → (𝐴 × {𝐵}) ∈ V) | |
5 | 2, 3, 4 | sylancl 586 | . 2 ⊢ (𝜑 → (𝐴 × {𝐵}) ∈ V) |
6 | 1, 5 | eufsnlem 47460 | 1 ⊢ (𝜑 → ∃!𝑓 𝑓:𝐴⟶{𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∃!weu 2562 Vcvv 3474 {csn 4627 × cxp 5673 ⟶wf 6536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-fv 6548 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |