MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismred Structured version   Visualization version   GIF version

Theorem ismred 16852
Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
ismred.ss (𝜑𝐶 ⊆ 𝒫 𝑋)
ismred.ba (𝜑𝑋𝐶)
ismred.in ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
Assertion
Ref Expression
ismred (𝜑𝐶 ∈ (Moore‘𝑋))
Distinct variable groups:   𝜑,𝑠   𝐶,𝑠   𝑋,𝑠

Proof of Theorem ismred
StepHypRef Expression
1 ismred.ss . 2 (𝜑𝐶 ⊆ 𝒫 𝑋)
2 ismred.ba . 2 (𝜑𝑋𝐶)
3 velpw 4517 . . . 4 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
4 ismred.in . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
543expia 1118 . . . 4 ((𝜑𝑠𝐶) → (𝑠 ≠ ∅ → 𝑠𝐶))
63, 5sylan2b 596 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐶) → (𝑠 ≠ ∅ → 𝑠𝐶))
76ralrimiva 3170 . 2 (𝜑 → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
8 ismre 16840 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
91, 2, 7, 8syl3anbrc 1340 1 (𝜑𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084  wcel 2115  wne 3007  wral 3126  wss 3910  c0 4266  𝒫 cpw 4512   cint 4849  cfv 6328  Moorecmre 16832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-iota 6287  df-fun 6330  df-fv 6336  df-mre 16836
This theorem is referenced by:  ismred2  16853  mremre  16854  submre  16855  subrgmre  19535  lssmre  19714  cssmre  20813  cldmre  21662  toponmre  21677  ismrcd1  39446
  Copyright terms: Public domain W3C validator