Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ismred | Structured version Visualization version GIF version |
Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
ismred.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) |
ismred.ba | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
ismred.in | ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) |
Ref | Expression |
---|---|
ismred | ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismred.ss | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) | |
2 | ismred.ba | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
3 | velpw 4544 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝐶 ↔ 𝑠 ⊆ 𝐶) | |
4 | ismred.in | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) | |
5 | 4 | 3expia 1120 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
6 | 3, 5 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐶) → (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
7 | 6 | ralrimiva 3110 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
8 | ismre 17295 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
9 | 1, 2, 7, 8 | syl3anbrc 1342 | 1 ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2110 ≠ wne 2945 ∀wral 3066 ⊆ wss 3892 ∅c0 4262 𝒫 cpw 4539 ∩ cint 4885 ‘cfv 6431 Moorecmre 17287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6389 df-fun 6433 df-fv 6439 df-mre 17291 |
This theorem is referenced by: ismred2 17308 mremre 17309 submre 17310 subrgmre 20044 lssmre 20224 cssmre 20894 cldmre 22225 toponmre 22240 zartopn 31819 ismrcd1 40515 |
Copyright terms: Public domain | W3C validator |