MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismred Structured version   Visualization version   GIF version

Theorem ismred 17647
Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Hypotheses
Ref Expression
ismred.ss (𝜑𝐶 ⊆ 𝒫 𝑋)
ismred.ba (𝜑𝑋𝐶)
ismred.in ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
Assertion
Ref Expression
ismred (𝜑𝐶 ∈ (Moore‘𝑋))
Distinct variable groups:   𝜑,𝑠   𝐶,𝑠   𝑋,𝑠

Proof of Theorem ismred
StepHypRef Expression
1 ismred.ss . 2 (𝜑𝐶 ⊆ 𝒫 𝑋)
2 ismred.ba . 2 (𝜑𝑋𝐶)
3 velpw 4610 . . . 4 (𝑠 ∈ 𝒫 𝐶𝑠𝐶)
4 ismred.in . . . . 5 ((𝜑𝑠𝐶𝑠 ≠ ∅) → 𝑠𝐶)
543expia 1120 . . . 4 ((𝜑𝑠𝐶) → (𝑠 ≠ ∅ → 𝑠𝐶))
63, 5sylan2b 594 . . 3 ((𝜑𝑠 ∈ 𝒫 𝐶) → (𝑠 ≠ ∅ → 𝑠𝐶))
76ralrimiva 3144 . 2 (𝜑 → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶))
8 ismre 17635 . 2 (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋𝑋𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → 𝑠𝐶)))
91, 2, 7, 8syl3anbrc 1342 1 (𝜑𝐶 ∈ (Moore‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086  wcel 2106  wne 2938  wral 3059  wss 3963  c0 4339  𝒫 cpw 4605   cint 4951  cfv 6563  Moorecmre 17627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fv 6571  df-mre 17631
This theorem is referenced by:  ismred2  17648  mremre  17649  submre  17650  subrngmre  20579  subrgmre  20614  lssmre  20982  cssmre  21729  cldmre  23102  toponmre  23117  zartopn  33836  ismrcd1  42686
  Copyright terms: Public domain W3C validator