![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ismred | Structured version Visualization version GIF version |
Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
Ref | Expression |
---|---|
ismred.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) |
ismred.ba | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
ismred.in | ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) |
Ref | Expression |
---|---|
ismred | ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismred.ss | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) | |
2 | ismred.ba | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
3 | velpw 4627 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝐶 ↔ 𝑠 ⊆ 𝐶) | |
4 | ismred.in | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) | |
5 | 4 | 3expia 1121 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
6 | 3, 5 | sylan2b 593 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐶) → (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
7 | 6 | ralrimiva 3152 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
8 | ismre 17648 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
9 | 1, 2, 7, 8 | syl3anbrc 1343 | 1 ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 ∩ cint 4970 ‘cfv 6573 Moorecmre 17640 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-mre 17644 |
This theorem is referenced by: ismred2 17661 mremre 17662 submre 17663 subrngmre 20588 subrgmre 20625 lssmre 20987 cssmre 21734 cldmre 23107 toponmre 23122 zartopn 33821 ismrcd1 42654 |
Copyright terms: Public domain | W3C validator |