| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ismred | Structured version Visualization version GIF version | ||
| Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015.) |
| Ref | Expression |
|---|---|
| ismred.ss | ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) |
| ismred.ba | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
| ismred.in | ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| ismred | ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismred.ss | . 2 ⊢ (𝜑 → 𝐶 ⊆ 𝒫 𝑋) | |
| 2 | ismred.ba | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
| 3 | velpw 4555 | . . . 4 ⊢ (𝑠 ∈ 𝒫 𝐶 ↔ 𝑠 ⊆ 𝐶) | |
| 4 | ismred.in | . . . . 5 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅) → ∩ 𝑠 ∈ 𝐶) | |
| 5 | 4 | 3expia 1121 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ⊆ 𝐶) → (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
| 6 | 3, 5 | sylan2b 594 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝒫 𝐶) → (𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
| 7 | 6 | ralrimiva 3124 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶)) |
| 8 | ismre 17492 | . 2 ⊢ (𝐶 ∈ (Moore‘𝑋) ↔ (𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀𝑠 ∈ 𝒫 𝐶(𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶))) | |
| 9 | 1, 2, 7, 8 | syl3anbrc 1344 | 1 ⊢ (𝜑 → 𝐶 ∈ (Moore‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3902 ∅c0 4283 𝒫 cpw 4550 ∩ cint 4897 ‘cfv 6481 Moorecmre 17484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-mre 17488 |
| This theorem is referenced by: ismred2 17505 mremre 17506 submre 17507 subrngmre 20478 subrgmre 20513 lssmre 20900 cssmre 21631 cldmre 22994 toponmre 23009 zartopn 33886 ismrcd1 42737 |
| Copyright terms: Public domain | W3C validator |