MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmrc Structured version   Visualization version   GIF version

Theorem fnmrc 17555
Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnmrc mrCls Fn βˆͺ ran Moore

Proof of Theorem fnmrc
Dummy variables 𝑐 π‘₯ 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mrc 17535 . . 3 mrCls = (𝑐 ∈ βˆͺ ran Moore ↦ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}))
21fnmpt 6689 . 2 (βˆ€π‘ ∈ βˆͺ ran Moore(π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) ∈ V β†’ mrCls Fn βˆͺ ran Moore)
3 mreunirn 17549 . . 3 (𝑐 ∈ βˆͺ ran Moore ↔ 𝑐 ∈ (Mooreβ€˜βˆͺ 𝑐))
4 mrcflem 17554 . . . . 5 (𝑐 ∈ (Mooreβ€˜βˆͺ 𝑐) β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}):𝒫 βˆͺ π‘βŸΆπ‘)
5 fssxp 6744 . . . . 5 ((π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}):𝒫 βˆͺ π‘βŸΆπ‘ β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) βŠ† (𝒫 βˆͺ 𝑐 Γ— 𝑐))
64, 5syl 17 . . . 4 (𝑐 ∈ (Mooreβ€˜βˆͺ 𝑐) β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) βŠ† (𝒫 βˆͺ 𝑐 Γ— 𝑐))
7 vuniex 7731 . . . . . 6 βˆͺ 𝑐 ∈ V
87pwex 5377 . . . . 5 𝒫 βˆͺ 𝑐 ∈ V
9 vex 3476 . . . . 5 𝑐 ∈ V
108, 9xpex 7742 . . . 4 (𝒫 βˆͺ 𝑐 Γ— 𝑐) ∈ V
11 ssexg 5322 . . . 4 (((π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) βŠ† (𝒫 βˆͺ 𝑐 Γ— 𝑐) ∧ (𝒫 βˆͺ 𝑐 Γ— 𝑐) ∈ V) β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) ∈ V)
126, 10, 11sylancl 584 . . 3 (𝑐 ∈ (Mooreβ€˜βˆͺ 𝑐) β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) ∈ V)
133, 12sylbi 216 . 2 (𝑐 ∈ βˆͺ ran Moore β†’ (π‘₯ ∈ 𝒫 βˆͺ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ π‘₯ βŠ† 𝑠}) ∈ V)
142, 13mprg 3065 1 mrCls Fn βˆͺ ran Moore
Colors of variables: wff setvar class
Syntax hints:   ∈ wcel 2104  {crab 3430  Vcvv 3472   βŠ† wss 3947  π’« cpw 4601  βˆͺ cuni 4907  βˆ© cint 4949   ↦ cmpt 5230   Γ— cxp 5673  ran crn 5676   Fn wfn 6537  βŸΆwf 6538  β€˜cfv 6542  Moorecmre 17530  mrClscmrc 17531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-mre 17534  df-mrc 17535
This theorem is referenced by:  ismrc  41741
  Copyright terms: Public domain W3C validator