MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmrc Structured version   Visualization version   GIF version

Theorem fnmrc 17568
Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnmrc mrCls Fn ran Moore

Proof of Theorem fnmrc
Dummy variables 𝑐 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mrc 17548 . . 3 mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
21fnmpt 6658 . 2 (∀𝑐 ran Moore(𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V → mrCls Fn ran Moore)
3 mreunirn 17562 . . 3 (𝑐 ran Moore ↔ 𝑐 ∈ (Moore‘ 𝑐))
4 mrcflem 17567 . . . . 5 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
5 fssxp 6715 . . . . 5 ((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
64, 5syl 17 . . . 4 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
7 vuniex 7715 . . . . . 6 𝑐 ∈ V
87pwex 5335 . . . . 5 𝒫 𝑐 ∈ V
9 vex 3451 . . . . 5 𝑐 ∈ V
108, 9xpex 7729 . . . 4 (𝒫 𝑐 × 𝑐) ∈ V
11 ssexg 5278 . . . 4 (((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐) ∧ (𝒫 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
126, 10, 11sylancl 586 . . 3 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
133, 12sylbi 217 . 2 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
142, 13mprg 3050 1 mrCls Fn ran Moore
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {crab 3405  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871   cint 4910  cmpt 5188   × cxp 5636  ran crn 5639   Fn wfn 6506  wf 6507  cfv 6511  Moorecmre 17543  mrClscmrc 17544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-mre 17547  df-mrc 17548
This theorem is referenced by:  ismrc  42689
  Copyright terms: Public domain W3C validator