![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnmrc | Structured version Visualization version GIF version |
Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
Ref | Expression |
---|---|
fnmrc | ⊢ mrCls Fn ∪ ran Moore |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-mrc 17632 | . . 3 ⊢ mrCls = (𝑐 ∈ ∪ ran Moore ↦ (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠})) | |
2 | 1 | fnmpt 6709 | . 2 ⊢ (∀𝑐 ∈ ∪ ran Moore(𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ∈ V → mrCls Fn ∪ ran Moore) |
3 | mreunirn 17646 | . . 3 ⊢ (𝑐 ∈ ∪ ran Moore ↔ 𝑐 ∈ (Moore‘∪ 𝑐)) | |
4 | mrcflem 17651 | . . . . 5 ⊢ (𝑐 ∈ (Moore‘∪ 𝑐) → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}):𝒫 ∪ 𝑐⟶𝑐) | |
5 | fssxp 6764 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}):𝒫 ∪ 𝑐⟶𝑐 → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ⊆ (𝒫 ∪ 𝑐 × 𝑐)) | |
6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑐 ∈ (Moore‘∪ 𝑐) → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ⊆ (𝒫 ∪ 𝑐 × 𝑐)) |
7 | vuniex 7758 | . . . . . 6 ⊢ ∪ 𝑐 ∈ V | |
8 | 7 | pwex 5386 | . . . . 5 ⊢ 𝒫 ∪ 𝑐 ∈ V |
9 | vex 3482 | . . . . 5 ⊢ 𝑐 ∈ V | |
10 | 8, 9 | xpex 7772 | . . . 4 ⊢ (𝒫 ∪ 𝑐 × 𝑐) ∈ V |
11 | ssexg 5329 | . . . 4 ⊢ (((𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ⊆ (𝒫 ∪ 𝑐 × 𝑐) ∧ (𝒫 ∪ 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ∈ V) | |
12 | 6, 10, 11 | sylancl 586 | . . 3 ⊢ (𝑐 ∈ (Moore‘∪ 𝑐) → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ∈ V) |
13 | 3, 12 | sylbi 217 | . 2 ⊢ (𝑐 ∈ ∪ ran Moore → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ∈ V) |
14 | 2, 13 | mprg 3065 | 1 ⊢ mrCls Fn ∪ ran Moore |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 {crab 3433 Vcvv 3478 ⊆ wss 3963 𝒫 cpw 4605 ∪ cuni 4912 ∩ cint 4951 ↦ cmpt 5231 × cxp 5687 ran crn 5690 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 Moorecmre 17627 mrClscmrc 17628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-mre 17631 df-mrc 17632 |
This theorem is referenced by: ismrc 42689 |
Copyright terms: Public domain | W3C validator |