MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmrc Structured version   Visualization version   GIF version

Theorem fnmrc 17652
Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnmrc mrCls Fn ran Moore

Proof of Theorem fnmrc
Dummy variables 𝑐 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mrc 17632 . . 3 mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
21fnmpt 6709 . 2 (∀𝑐 ran Moore(𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V → mrCls Fn ran Moore)
3 mreunirn 17646 . . 3 (𝑐 ran Moore ↔ 𝑐 ∈ (Moore‘ 𝑐))
4 mrcflem 17651 . . . . 5 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
5 fssxp 6764 . . . . 5 ((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
64, 5syl 17 . . . 4 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
7 vuniex 7758 . . . . . 6 𝑐 ∈ V
87pwex 5386 . . . . 5 𝒫 𝑐 ∈ V
9 vex 3482 . . . . 5 𝑐 ∈ V
108, 9xpex 7772 . . . 4 (𝒫 𝑐 × 𝑐) ∈ V
11 ssexg 5329 . . . 4 (((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐) ∧ (𝒫 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
126, 10, 11sylancl 586 . . 3 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
133, 12sylbi 217 . 2 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
142, 13mprg 3065 1 mrCls Fn ran Moore
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  {crab 3433  Vcvv 3478  wss 3963  𝒫 cpw 4605   cuni 4912   cint 4951  cmpt 5231   × cxp 5687  ran crn 5690   Fn wfn 6558  wf 6559  cfv 6563  Moorecmre 17627  mrClscmrc 17628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fv 6571  df-mre 17631  df-mrc 17632
This theorem is referenced by:  ismrc  42689
  Copyright terms: Public domain W3C validator