MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnmrc Structured version   Visualization version   GIF version

Theorem fnmrc 17619
Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
fnmrc mrCls Fn ran Moore

Proof of Theorem fnmrc
Dummy variables 𝑐 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-mrc 17599 . . 3 mrCls = (𝑐 ran Moore ↦ (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}))
21fnmpt 6678 . 2 (∀𝑐 ran Moore(𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V → mrCls Fn ran Moore)
3 mreunirn 17613 . . 3 (𝑐 ran Moore ↔ 𝑐 ∈ (Moore‘ 𝑐))
4 mrcflem 17618 . . . . 5 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐)
5 fssxp 6733 . . . . 5 ((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}):𝒫 𝑐𝑐 → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
64, 5syl 17 . . . 4 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐))
7 vuniex 7733 . . . . . 6 𝑐 ∈ V
87pwex 5350 . . . . 5 𝒫 𝑐 ∈ V
9 vex 3463 . . . . 5 𝑐 ∈ V
108, 9xpex 7747 . . . 4 (𝒫 𝑐 × 𝑐) ∈ V
11 ssexg 5293 . . . 4 (((𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ⊆ (𝒫 𝑐 × 𝑐) ∧ (𝒫 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
126, 10, 11sylancl 586 . . 3 (𝑐 ∈ (Moore‘ 𝑐) → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
133, 12sylbi 217 . 2 (𝑐 ran Moore → (𝑥 ∈ 𝒫 𝑐 {𝑠𝑐𝑥𝑠}) ∈ V)
142, 13mprg 3057 1 mrCls Fn ran Moore
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {crab 3415  Vcvv 3459  wss 3926  𝒫 cpw 4575   cuni 4883   cint 4922  cmpt 5201   × cxp 5652  ran crn 5655   Fn wfn 6526  wf 6527  cfv 6531  Moorecmre 17594  mrClscmrc 17595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-fv 6539  df-mre 17598  df-mrc 17599
This theorem is referenced by:  ismrc  42724
  Copyright terms: Public domain W3C validator