| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnmrc | Structured version Visualization version GIF version | ||
| Description: Moore-closure is a well-behaved function. (Contributed by Stefan O'Rear, 1-Feb-2015.) |
| Ref | Expression |
|---|---|
| fnmrc | ⊢ mrCls Fn ∪ ran Moore |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mrc 17489 | . . 3 ⊢ mrCls = (𝑐 ∈ ∪ ran Moore ↦ (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠})) | |
| 2 | 1 | fnmpt 6622 | . 2 ⊢ (∀𝑐 ∈ ∪ ran Moore(𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ∈ V → mrCls Fn ∪ ran Moore) |
| 3 | mreunirn 17503 | . . 3 ⊢ (𝑐 ∈ ∪ ran Moore ↔ 𝑐 ∈ (Moore‘∪ 𝑐)) | |
| 4 | mrcflem 17512 | . . . . 5 ⊢ (𝑐 ∈ (Moore‘∪ 𝑐) → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}):𝒫 ∪ 𝑐⟶𝑐) | |
| 5 | fssxp 6679 | . . . . 5 ⊢ ((𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}):𝒫 ∪ 𝑐⟶𝑐 → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ⊆ (𝒫 ∪ 𝑐 × 𝑐)) | |
| 6 | 4, 5 | syl 17 | . . . 4 ⊢ (𝑐 ∈ (Moore‘∪ 𝑐) → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ⊆ (𝒫 ∪ 𝑐 × 𝑐)) |
| 7 | vuniex 7675 | . . . . . 6 ⊢ ∪ 𝑐 ∈ V | |
| 8 | 7 | pwex 5319 | . . . . 5 ⊢ 𝒫 ∪ 𝑐 ∈ V |
| 9 | vex 3440 | . . . . 5 ⊢ 𝑐 ∈ V | |
| 10 | 8, 9 | xpex 7689 | . . . 4 ⊢ (𝒫 ∪ 𝑐 × 𝑐) ∈ V |
| 11 | ssexg 5262 | . . . 4 ⊢ (((𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ⊆ (𝒫 ∪ 𝑐 × 𝑐) ∧ (𝒫 ∪ 𝑐 × 𝑐) ∈ V) → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ∈ V) | |
| 12 | 6, 10, 11 | sylancl 586 | . . 3 ⊢ (𝑐 ∈ (Moore‘∪ 𝑐) → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ∈ V) |
| 13 | 3, 12 | sylbi 217 | . 2 ⊢ (𝑐 ∈ ∪ ran Moore → (𝑥 ∈ 𝒫 ∪ 𝑐 ↦ ∩ {𝑠 ∈ 𝑐 ∣ 𝑥 ⊆ 𝑠}) ∈ V) |
| 14 | 2, 13 | mprg 3050 | 1 ⊢ mrCls Fn ∪ ran Moore |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {crab 3394 Vcvv 3436 ⊆ wss 3903 𝒫 cpw 4551 ∪ cuni 4858 ∩ cint 4896 ↦ cmpt 5173 × cxp 5617 ran crn 5620 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 Moorecmre 17484 mrClscmrc 17485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-mre 17488 df-mrc 17489 |
| This theorem is referenced by: ismrc 42694 |
| Copyright terms: Public domain | W3C validator |