Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstaval Structured version   Visualization version   GIF version

Theorem mstaval 33506
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstaval 𝑆 = ran 𝑅

Proof of Theorem mstaval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mstaval.s . 2 𝑆 = (mStat‘𝑇)
2 fveq2 6774 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mstaval.r . . . . . 6 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2796 . . . . 5 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54rneqd 5847 . . . 4 (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅)
6 df-msta 33457 . . . 4 mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡))
73fvexi 6788 . . . . 5 𝑅 ∈ V
87rnex 7759 . . . 4 ran 𝑅 ∈ V
95, 6, 8fvmpt 6875 . . 3 (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
10 rn0 5835 . . . . 5 ran ∅ = ∅
1110eqcomi 2747 . . . 4 ∅ = ran ∅
12 fvprc 6766 . . . 4 𝑇 ∈ V → (mStat‘𝑇) = ∅)
13 fvprc 6766 . . . . . 6 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
143, 13eqtrid 2790 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1514rneqd 5847 . . . 4 𝑇 ∈ V → ran 𝑅 = ran ∅)
1611, 12, 153eqtr4a 2804 . . 3 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
179, 16pm2.61i 182 . 2 (mStat‘𝑇) = ran 𝑅
181, 17eqtri 2766 1 𝑆 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  c0 4256  ran crn 5590  cfv 6433  mStRedcmsr 33436  mStatcmsta 33437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-msta 33457
This theorem is referenced by:  msrid  33507  msrfo  33508  mstapst  33509  elmsta  33510
  Copyright terms: Public domain W3C validator