| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mstaval | Structured version Visualization version GIF version | ||
| Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| mstaval | ⊢ 𝑆 = ran 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mstaval.s | . 2 ⊢ 𝑆 = (mStat‘𝑇) | |
| 2 | fveq2 6860 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
| 3 | mstaval.r | . . . . . 6 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
| 5 | 4 | rneqd 5904 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅) |
| 6 | df-msta 35482 | . . . 4 ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | |
| 7 | 3 | fvexi 6874 | . . . . 5 ⊢ 𝑅 ∈ V |
| 8 | 7 | rnex 7888 | . . . 4 ⊢ ran 𝑅 ∈ V |
| 9 | 5, 6, 8 | fvmpt 6970 | . . 3 ⊢ (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
| 10 | rn0 5891 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 11 | 10 | eqcomi 2739 | . . . 4 ⊢ ∅ = ran ∅ |
| 12 | fvprc 6852 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ∅) | |
| 13 | fvprc 6852 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
| 14 | 3, 13 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
| 15 | 14 | rneqd 5904 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran 𝑅 = ran ∅) |
| 16 | 11, 12, 15 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
| 17 | 9, 16 | pm2.61i 182 | . 2 ⊢ (mStat‘𝑇) = ran 𝑅 |
| 18 | 1, 17 | eqtri 2753 | 1 ⊢ 𝑆 = ran 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∅c0 4298 ran crn 5641 ‘cfv 6513 mStRedcmsr 35461 mStatcmsta 35462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fv 6521 df-msta 35482 |
| This theorem is referenced by: msrid 35532 msrfo 35533 mstapst 35534 elmsta 35535 |
| Copyright terms: Public domain | W3C validator |