| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mstaval | Structured version Visualization version GIF version | ||
| Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| mstaval | ⊢ 𝑆 = ran 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mstaval.s | . 2 ⊢ 𝑆 = (mStat‘𝑇) | |
| 2 | fveq2 6887 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
| 3 | mstaval.r | . . . . . 6 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2787 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
| 5 | 4 | rneqd 5931 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅) |
| 6 | df-msta 35441 | . . . 4 ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | |
| 7 | 3 | fvexi 6901 | . . . . 5 ⊢ 𝑅 ∈ V |
| 8 | 7 | rnex 7915 | . . . 4 ⊢ ran 𝑅 ∈ V |
| 9 | 5, 6, 8 | fvmpt 6997 | . . 3 ⊢ (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
| 10 | rn0 5918 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 11 | 10 | eqcomi 2743 | . . . 4 ⊢ ∅ = ran ∅ |
| 12 | fvprc 6879 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ∅) | |
| 13 | fvprc 6879 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
| 14 | 3, 13 | eqtrid 2781 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
| 15 | 14 | rneqd 5931 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran 𝑅 = ran ∅) |
| 16 | 11, 12, 15 | 3eqtr4a 2795 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
| 17 | 9, 16 | pm2.61i 182 | . 2 ⊢ (mStat‘𝑇) = ran 𝑅 |
| 18 | 1, 17 | eqtri 2757 | 1 ⊢ 𝑆 = ran 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ∅c0 4315 ran crn 5668 ‘cfv 6542 mStRedcmsr 35420 mStatcmsta 35421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-iota 6495 df-fun 6544 df-fv 6550 df-msta 35441 |
| This theorem is referenced by: msrid 35491 msrfo 35492 mstapst 35493 elmsta 35494 |
| Copyright terms: Public domain | W3C validator |