Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstaval Structured version   Visualization version   GIF version

Theorem mstaval 35588
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstaval 𝑆 = ran 𝑅

Proof of Theorem mstaval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mstaval.s . 2 𝑆 = (mStat‘𝑇)
2 fveq2 6822 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mstaval.r . . . . . 6 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2784 . . . . 5 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54rneqd 5877 . . . 4 (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅)
6 df-msta 35539 . . . 4 mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡))
73fvexi 6836 . . . . 5 𝑅 ∈ V
87rnex 7840 . . . 4 ran 𝑅 ∈ V
95, 6, 8fvmpt 6929 . . 3 (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
10 rn0 5865 . . . . 5 ran ∅ = ∅
1110eqcomi 2740 . . . 4 ∅ = ran ∅
12 fvprc 6814 . . . 4 𝑇 ∈ V → (mStat‘𝑇) = ∅)
13 fvprc 6814 . . . . . 6 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
143, 13eqtrid 2778 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1514rneqd 5877 . . . 4 𝑇 ∈ V → ran 𝑅 = ran ∅)
1611, 12, 153eqtr4a 2792 . . 3 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
179, 16pm2.61i 182 . 2 (mStat‘𝑇) = ran 𝑅
181, 17eqtri 2754 1 𝑆 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  Vcvv 3436  c0 4280  ran crn 5615  cfv 6481  mStRedcmsr 35518  mStatcmsta 35519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-msta 35539
This theorem is referenced by:  msrid  35589  msrfo  35590  mstapst  35591  elmsta  35592
  Copyright terms: Public domain W3C validator