![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mstaval | Structured version Visualization version GIF version |
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
mstaval | ⊢ 𝑆 = ran 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mstaval.s | . 2 ⊢ 𝑆 = (mStat‘𝑇) | |
2 | fveq2 6911 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
3 | mstaval.r | . . . . . 6 ⊢ 𝑅 = (mStRed‘𝑇) | |
4 | 2, 3 | eqtr4di 2794 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
5 | 4 | rneqd 5953 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅) |
6 | df-msta 35492 | . . . 4 ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | |
7 | 3 | fvexi 6925 | . . . . 5 ⊢ 𝑅 ∈ V |
8 | 7 | rnex 7937 | . . . 4 ⊢ ran 𝑅 ∈ V |
9 | 5, 6, 8 | fvmpt 7020 | . . 3 ⊢ (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
10 | rn0 5940 | . . . . 5 ⊢ ran ∅ = ∅ | |
11 | 10 | eqcomi 2745 | . . . 4 ⊢ ∅ = ran ∅ |
12 | fvprc 6903 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ∅) | |
13 | fvprc 6903 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
14 | 3, 13 | eqtrid 2788 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
15 | 14 | rneqd 5953 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran 𝑅 = ran ∅) |
16 | 11, 12, 15 | 3eqtr4a 2802 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
17 | 9, 16 | pm2.61i 182 | . 2 ⊢ (mStat‘𝑇) = ran 𝑅 |
18 | 1, 17 | eqtri 2764 | 1 ⊢ 𝑆 = ran 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∅c0 4340 ran crn 5691 ‘cfv 6566 mStRedcmsr 35471 mStatcmsta 35472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-iota 6519 df-fun 6568 df-fv 6574 df-msta 35492 |
This theorem is referenced by: msrid 35542 msrfo 35543 mstapst 35544 elmsta 35545 |
Copyright terms: Public domain | W3C validator |