Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstaval Structured version   Visualization version   GIF version

Theorem mstaval 33406
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstaval 𝑆 = ran 𝑅

Proof of Theorem mstaval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mstaval.s . 2 𝑆 = (mStat‘𝑇)
2 fveq2 6756 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mstaval.r . . . . . 6 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2797 . . . . 5 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54rneqd 5836 . . . 4 (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅)
6 df-msta 33357 . . . 4 mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡))
73fvexi 6770 . . . . 5 𝑅 ∈ V
87rnex 7733 . . . 4 ran 𝑅 ∈ V
95, 6, 8fvmpt 6857 . . 3 (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
10 rn0 5824 . . . . 5 ran ∅ = ∅
1110eqcomi 2747 . . . 4 ∅ = ran ∅
12 fvprc 6748 . . . 4 𝑇 ∈ V → (mStat‘𝑇) = ∅)
13 fvprc 6748 . . . . . 6 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
143, 13syl5eq 2791 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1514rneqd 5836 . . . 4 𝑇 ∈ V → ran 𝑅 = ran ∅)
1611, 12, 153eqtr4a 2805 . . 3 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
179, 16pm2.61i 182 . 2 (mStat‘𝑇) = ran 𝑅
181, 17eqtri 2766 1 𝑆 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  c0 4253  ran crn 5581  cfv 6418  mStRedcmsr 33336  mStatcmsta 33337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-msta 33357
This theorem is referenced by:  msrid  33407  msrfo  33408  mstapst  33409  elmsta  33410
  Copyright terms: Public domain W3C validator