| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mstaval | Structured version Visualization version GIF version | ||
| Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| mstaval | ⊢ 𝑆 = ran 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mstaval.s | . 2 ⊢ 𝑆 = (mStat‘𝑇) | |
| 2 | fveq2 6822 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
| 3 | mstaval.r | . . . . . 6 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2784 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
| 5 | 4 | rneqd 5877 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅) |
| 6 | df-msta 35539 | . . . 4 ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | |
| 7 | 3 | fvexi 6836 | . . . . 5 ⊢ 𝑅 ∈ V |
| 8 | 7 | rnex 7840 | . . . 4 ⊢ ran 𝑅 ∈ V |
| 9 | 5, 6, 8 | fvmpt 6929 | . . 3 ⊢ (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
| 10 | rn0 5865 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 11 | 10 | eqcomi 2740 | . . . 4 ⊢ ∅ = ran ∅ |
| 12 | fvprc 6814 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ∅) | |
| 13 | fvprc 6814 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
| 14 | 3, 13 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
| 15 | 14 | rneqd 5877 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran 𝑅 = ran ∅) |
| 16 | 11, 12, 15 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
| 17 | 9, 16 | pm2.61i 182 | . 2 ⊢ (mStat‘𝑇) = ran 𝑅 |
| 18 | 1, 17 | eqtri 2754 | 1 ⊢ 𝑆 = ran 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 ran crn 5615 ‘cfv 6481 mStRedcmsr 35518 mStatcmsta 35519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-msta 35539 |
| This theorem is referenced by: msrid 35589 msrfo 35590 mstapst 35591 elmsta 35592 |
| Copyright terms: Public domain | W3C validator |