Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mstaval | Structured version Visualization version GIF version |
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
mstaval | ⊢ 𝑆 = ran 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mstaval.s | . 2 ⊢ 𝑆 = (mStat‘𝑇) | |
2 | fveq2 6774 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
3 | mstaval.r | . . . . . 6 ⊢ 𝑅 = (mStRed‘𝑇) | |
4 | 2, 3 | eqtr4di 2796 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
5 | 4 | rneqd 5847 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅) |
6 | df-msta 33457 | . . . 4 ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | |
7 | 3 | fvexi 6788 | . . . . 5 ⊢ 𝑅 ∈ V |
8 | 7 | rnex 7759 | . . . 4 ⊢ ran 𝑅 ∈ V |
9 | 5, 6, 8 | fvmpt 6875 | . . 3 ⊢ (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
10 | rn0 5835 | . . . . 5 ⊢ ran ∅ = ∅ | |
11 | 10 | eqcomi 2747 | . . . 4 ⊢ ∅ = ran ∅ |
12 | fvprc 6766 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ∅) | |
13 | fvprc 6766 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
14 | 3, 13 | eqtrid 2790 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
15 | 14 | rneqd 5847 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran 𝑅 = ran ∅) |
16 | 11, 12, 15 | 3eqtr4a 2804 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
17 | 9, 16 | pm2.61i 182 | . 2 ⊢ (mStat‘𝑇) = ran 𝑅 |
18 | 1, 17 | eqtri 2766 | 1 ⊢ 𝑆 = ran 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 ran crn 5590 ‘cfv 6433 mStRedcmsr 33436 mStatcmsta 33437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6391 df-fun 6435 df-fv 6441 df-msta 33457 |
This theorem is referenced by: msrid 33507 msrfo 33508 mstapst 33509 elmsta 33510 |
Copyright terms: Public domain | W3C validator |