Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mstaval | Structured version Visualization version GIF version |
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
mstaval | ⊢ 𝑆 = ran 𝑅 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mstaval.s | . 2 ⊢ 𝑆 = (mStat‘𝑇) | |
2 | fveq2 6756 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
3 | mstaval.r | . . . . . 6 ⊢ 𝑅 = (mStRed‘𝑇) | |
4 | 2, 3 | eqtr4di 2797 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
5 | 4 | rneqd 5836 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅) |
6 | df-msta 33357 | . . . 4 ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | |
7 | 3 | fvexi 6770 | . . . . 5 ⊢ 𝑅 ∈ V |
8 | 7 | rnex 7733 | . . . 4 ⊢ ran 𝑅 ∈ V |
9 | 5, 6, 8 | fvmpt 6857 | . . 3 ⊢ (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
10 | rn0 5824 | . . . . 5 ⊢ ran ∅ = ∅ | |
11 | 10 | eqcomi 2747 | . . . 4 ⊢ ∅ = ran ∅ |
12 | fvprc 6748 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ∅) | |
13 | fvprc 6748 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
14 | 3, 13 | syl5eq 2791 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
15 | 14 | rneqd 5836 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran 𝑅 = ran ∅) |
16 | 11, 12, 15 | 3eqtr4a 2805 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
17 | 9, 16 | pm2.61i 182 | . 2 ⊢ (mStat‘𝑇) = ran 𝑅 |
18 | 1, 17 | eqtri 2766 | 1 ⊢ 𝑆 = ran 𝑅 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ran crn 5581 ‘cfv 6418 mStRedcmsr 33336 mStatcmsta 33337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fv 6426 df-msta 33357 |
This theorem is referenced by: msrid 33407 msrfo 33408 mstapst 33409 elmsta 33410 |
Copyright terms: Public domain | W3C validator |