Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstaval Structured version   Visualization version   GIF version

Theorem mstaval 35541
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstaval 𝑆 = ran 𝑅

Proof of Theorem mstaval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mstaval.s . 2 𝑆 = (mStat‘𝑇)
2 fveq2 6911 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mstaval.r . . . . . 6 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2794 . . . . 5 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54rneqd 5953 . . . 4 (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅)
6 df-msta 35492 . . . 4 mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡))
73fvexi 6925 . . . . 5 𝑅 ∈ V
87rnex 7937 . . . 4 ran 𝑅 ∈ V
95, 6, 8fvmpt 7020 . . 3 (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
10 rn0 5940 . . . . 5 ran ∅ = ∅
1110eqcomi 2745 . . . 4 ∅ = ran ∅
12 fvprc 6903 . . . 4 𝑇 ∈ V → (mStat‘𝑇) = ∅)
13 fvprc 6903 . . . . . 6 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
143, 13eqtrid 2788 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1514rneqd 5953 . . . 4 𝑇 ∈ V → ran 𝑅 = ran ∅)
1611, 12, 153eqtr4a 2802 . . 3 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
179, 16pm2.61i 182 . 2 (mStat‘𝑇) = ran 𝑅
181, 17eqtri 2764 1 𝑆 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2107  Vcvv 3479  c0 4340  ran crn 5691  cfv 6566  mStRedcmsr 35471  mStatcmsta 35472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3435  df-v 3481  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-nul 4341  df-if 4533  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5584  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-iota 6519  df-fun 6568  df-fv 6574  df-msta 35492
This theorem is referenced by:  msrid  35542  msrfo  35543  mstapst  35544  elmsta  35545
  Copyright terms: Public domain W3C validator