Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstaval Structured version   Visualization version   GIF version

Theorem mstaval 35533
Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstaval.r 𝑅 = (mStRed‘𝑇)
mstaval.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstaval 𝑆 = ran 𝑅

Proof of Theorem mstaval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 mstaval.s . 2 𝑆 = (mStat‘𝑇)
2 fveq2 6865 . . . . . 6 (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇))
3 mstaval.r . . . . . 6 𝑅 = (mStRed‘𝑇)
42, 3eqtr4di 2783 . . . . 5 (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅)
54rneqd 5910 . . . 4 (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅)
6 df-msta 35484 . . . 4 mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡))
73fvexi 6879 . . . . 5 𝑅 ∈ V
87rnex 7895 . . . 4 ran 𝑅 ∈ V
95, 6, 8fvmpt 6975 . . 3 (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
10 rn0 5897 . . . . 5 ran ∅ = ∅
1110eqcomi 2739 . . . 4 ∅ = ran ∅
12 fvprc 6857 . . . 4 𝑇 ∈ V → (mStat‘𝑇) = ∅)
13 fvprc 6857 . . . . . 6 𝑇 ∈ V → (mStRed‘𝑇) = ∅)
143, 13eqtrid 2777 . . . . 5 𝑇 ∈ V → 𝑅 = ∅)
1514rneqd 5910 . . . 4 𝑇 ∈ V → ran 𝑅 = ran ∅)
1611, 12, 153eqtr4a 2791 . . 3 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅)
179, 16pm2.61i 182 . 2 (mStat‘𝑇) = ran 𝑅
181, 17eqtri 2753 1 𝑆 = ran 𝑅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  Vcvv 3455  c0 4304  ran crn 5647  cfv 6519  mStRedcmsr 35463  mStatcmsta 35464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-mpt 5197  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-iota 6472  df-fun 6521  df-fv 6527  df-msta 35484
This theorem is referenced by:  msrid  35534  msrfo  35535  mstapst  35536  elmsta  35537
  Copyright terms: Public domain W3C validator