| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mstaval | Structured version Visualization version GIF version | ||
| Description: Value of the set of statements. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstaval.r | ⊢ 𝑅 = (mStRed‘𝑇) |
| mstaval.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| mstaval | ⊢ 𝑆 = ran 𝑅 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mstaval.s | . 2 ⊢ 𝑆 = (mStat‘𝑇) | |
| 2 | fveq2 6840 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = (mStRed‘𝑇)) | |
| 3 | mstaval.r | . . . . . 6 ⊢ 𝑅 = (mStRed‘𝑇) | |
| 4 | 2, 3 | eqtr4di 2782 | . . . . 5 ⊢ (𝑡 = 𝑇 → (mStRed‘𝑡) = 𝑅) |
| 5 | 4 | rneqd 5891 | . . . 4 ⊢ (𝑡 = 𝑇 → ran (mStRed‘𝑡) = ran 𝑅) |
| 6 | df-msta 35475 | . . . 4 ⊢ mStat = (𝑡 ∈ V ↦ ran (mStRed‘𝑡)) | |
| 7 | 3 | fvexi 6854 | . . . . 5 ⊢ 𝑅 ∈ V |
| 8 | 7 | rnex 7866 | . . . 4 ⊢ ran 𝑅 ∈ V |
| 9 | 5, 6, 8 | fvmpt 6950 | . . 3 ⊢ (𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
| 10 | rn0 5879 | . . . . 5 ⊢ ran ∅ = ∅ | |
| 11 | 10 | eqcomi 2738 | . . . 4 ⊢ ∅ = ran ∅ |
| 12 | fvprc 6832 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ∅) | |
| 13 | fvprc 6832 | . . . . . 6 ⊢ (¬ 𝑇 ∈ V → (mStRed‘𝑇) = ∅) | |
| 14 | 3, 13 | eqtrid 2776 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → 𝑅 = ∅) |
| 15 | 14 | rneqd 5891 | . . . 4 ⊢ (¬ 𝑇 ∈ V → ran 𝑅 = ran ∅) |
| 16 | 11, 12, 15 | 3eqtr4a 2790 | . . 3 ⊢ (¬ 𝑇 ∈ V → (mStat‘𝑇) = ran 𝑅) |
| 17 | 9, 16 | pm2.61i 182 | . 2 ⊢ (mStat‘𝑇) = ran 𝑅 |
| 18 | 1, 17 | eqtri 2752 | 1 ⊢ 𝑆 = ran 𝑅 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 ran crn 5632 ‘cfv 6499 mStRedcmsr 35454 mStatcmsta 35455 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-iota 6452 df-fun 6501 df-fv 6507 df-msta 35475 |
| This theorem is referenced by: msrid 35525 msrfo 35526 mstapst 35527 elmsta 35528 |
| Copyright terms: Public domain | W3C validator |