| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mstapst | Structured version Visualization version GIF version | ||
| Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstapst.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| mstapst.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| mstapst | ⊢ 𝑆 ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
| 2 | mstapst.s | . . 3 ⊢ 𝑆 = (mStat‘𝑇) | |
| 3 | 1, 2 | mstaval 35490 | . 2 ⊢ 𝑆 = ran (mStRed‘𝑇) |
| 4 | mstapst.p | . . . 4 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 5 | 4, 1 | msrf 35488 | . . 3 ⊢ (mStRed‘𝑇):𝑃⟶𝑃 |
| 6 | frn 6724 | . . 3 ⊢ ((mStRed‘𝑇):𝑃⟶𝑃 → ran (mStRed‘𝑇) ⊆ 𝑃) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ran (mStRed‘𝑇) ⊆ 𝑃 |
| 8 | 3, 7 | eqsstri 4012 | 1 ⊢ 𝑆 ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ⊆ wss 3933 ran crn 5668 ⟶wf 6538 ‘cfv 6542 mPreStcmpst 35419 mStRedcmsr 35420 mStatcmsta 35421 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-ot 4617 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-1st 7997 df-2nd 7998 df-mpst 35439 df-msr 35440 df-msta 35441 |
| This theorem is referenced by: elmsta 35494 mclsssvlem 35508 mclsax 35515 mclsind 35516 mclsppslem 35529 |
| Copyright terms: Public domain | W3C validator |