Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mstapst | Structured version Visualization version GIF version |
Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
mstapst.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
mstapst.s | ⊢ 𝑆 = (mStat‘𝑇) |
Ref | Expression |
---|---|
mstapst | ⊢ 𝑆 ⊆ 𝑃 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
2 | mstapst.s | . . 3 ⊢ 𝑆 = (mStat‘𝑇) | |
3 | 1, 2 | mstaval 33022 | . 2 ⊢ 𝑆 = ran (mStRed‘𝑇) |
4 | mstapst.p | . . . 4 ⊢ 𝑃 = (mPreSt‘𝑇) | |
5 | 4, 1 | msrf 33020 | . . 3 ⊢ (mStRed‘𝑇):𝑃⟶𝑃 |
6 | frn 6504 | . . 3 ⊢ ((mStRed‘𝑇):𝑃⟶𝑃 → ran (mStRed‘𝑇) ⊆ 𝑃) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ ran (mStRed‘𝑇) ⊆ 𝑃 |
8 | 3, 7 | eqsstri 3926 | 1 ⊢ 𝑆 ⊆ 𝑃 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ⊆ wss 3858 ran crn 5525 ⟶wf 6331 ‘cfv 6335 mPreStcmpst 32951 mStRedcmsr 32952 mStatcmsta 32953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-ot 4531 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-1st 7693 df-2nd 7694 df-mpst 32971 df-msr 32972 df-msta 32973 |
This theorem is referenced by: elmsta 33026 mclsssvlem 33040 mclsax 33047 mclsind 33048 mclsppslem 33061 |
Copyright terms: Public domain | W3C validator |