| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mstapst | Structured version Visualization version GIF version | ||
| Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.) |
| Ref | Expression |
|---|---|
| mstapst.p | ⊢ 𝑃 = (mPreSt‘𝑇) |
| mstapst.s | ⊢ 𝑆 = (mStat‘𝑇) |
| Ref | Expression |
|---|---|
| mstapst | ⊢ 𝑆 ⊆ 𝑃 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ (mStRed‘𝑇) = (mStRed‘𝑇) | |
| 2 | mstapst.s | . . 3 ⊢ 𝑆 = (mStat‘𝑇) | |
| 3 | 1, 2 | mstaval 35531 | . 2 ⊢ 𝑆 = ran (mStRed‘𝑇) |
| 4 | mstapst.p | . . . 4 ⊢ 𝑃 = (mPreSt‘𝑇) | |
| 5 | 4, 1 | msrf 35529 | . . 3 ⊢ (mStRed‘𝑇):𝑃⟶𝑃 |
| 6 | frn 6697 | . . 3 ⊢ ((mStRed‘𝑇):𝑃⟶𝑃 → ran (mStRed‘𝑇) ⊆ 𝑃) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ ran (mStRed‘𝑇) ⊆ 𝑃 |
| 8 | 3, 7 | eqsstri 3995 | 1 ⊢ 𝑆 ⊆ 𝑃 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3916 ran crn 5641 ⟶wf 6509 ‘cfv 6513 mPreStcmpst 35460 mStRedcmsr 35461 mStatcmsta 35462 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-ot 4600 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-1st 7970 df-2nd 7971 df-mpst 35480 df-msr 35481 df-msta 35482 |
| This theorem is referenced by: elmsta 35535 mclsssvlem 35549 mclsax 35556 mclsind 35557 mclsppslem 35570 |
| Copyright terms: Public domain | W3C validator |