Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstapst Structured version   Visualization version   GIF version

Theorem mstapst 35574
Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstapst.p 𝑃 = (mPreSt‘𝑇)
mstapst.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstapst 𝑆𝑃

Proof of Theorem mstapst
StepHypRef Expression
1 eqid 2736 . . 3 (mStRed‘𝑇) = (mStRed‘𝑇)
2 mstapst.s . . 3 𝑆 = (mStat‘𝑇)
31, 2mstaval 35571 . 2 𝑆 = ran (mStRed‘𝑇)
4 mstapst.p . . . 4 𝑃 = (mPreSt‘𝑇)
54, 1msrf 35569 . . 3 (mStRed‘𝑇):𝑃𝑃
6 frn 6718 . . 3 ((mStRed‘𝑇):𝑃𝑃 → ran (mStRed‘𝑇) ⊆ 𝑃)
75, 6ax-mp 5 . 2 ran (mStRed‘𝑇) ⊆ 𝑃
83, 7eqsstri 4010 1 𝑆𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3931  ran crn 5660  wf 6532  cfv 6536  mPreStcmpst 35500  mStRedcmsr 35501  mStatcmsta 35502
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-1st 7993  df-2nd 7994  df-mpst 35520  df-msr 35521  df-msta 35522
This theorem is referenced by:  elmsta  35575  mclsssvlem  35589  mclsax  35596  mclsind  35597  mclsppslem  35610
  Copyright terms: Public domain W3C validator