Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mstapst Structured version   Visualization version   GIF version

Theorem mstapst 35530
Description: A statement is a pre-statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstapst.p 𝑃 = (mPreSt‘𝑇)
mstapst.s 𝑆 = (mStat‘𝑇)
Assertion
Ref Expression
mstapst 𝑆𝑃

Proof of Theorem mstapst
StepHypRef Expression
1 eqid 2729 . . 3 (mStRed‘𝑇) = (mStRed‘𝑇)
2 mstapst.s . . 3 𝑆 = (mStat‘𝑇)
31, 2mstaval 35527 . 2 𝑆 = ran (mStRed‘𝑇)
4 mstapst.p . . . 4 𝑃 = (mPreSt‘𝑇)
54, 1msrf 35525 . . 3 (mStRed‘𝑇):𝑃𝑃
6 frn 6659 . . 3 ((mStRed‘𝑇):𝑃𝑃 → ran (mStRed‘𝑇) ⊆ 𝑃)
75, 6ax-mp 5 . 2 ran (mStRed‘𝑇) ⊆ 𝑃
83, 7eqsstri 3982 1 𝑆𝑃
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3903  ran crn 5620  wf 6478  cfv 6482  mPreStcmpst 35456  mStRedcmsr 35457  mStatcmsta 35458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-ot 4586  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-1st 7924  df-2nd 7925  df-mpst 35476  df-msr 35477  df-msta 35478
This theorem is referenced by:  elmsta  35531  mclsssvlem  35545  mclsax  35552  mclsind  35553  mclsppslem  35566
  Copyright terms: Public domain W3C validator