![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0aryfvalel | Structured version Visualization version GIF version |
Description: A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶 ∈ 𝑋, see also 0aryfvalelfv 47820. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.) |
Ref | Expression |
---|---|
0aryfvalel | ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12517 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | fzo0 13688 | . . . . 5 ⊢ (0..^0) = ∅ | |
3 | 2 | eqcomi 2734 | . . . 4 ⊢ ∅ = (0..^0) |
4 | 3 | naryfvalel 47815 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
5 | 1, 4 | mpan 688 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
6 | mapdm0 8859 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ↑m ∅) = {∅}) | |
7 | 6 | feq2d 6703 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:(𝑋 ↑m ∅)⟶𝑋 ↔ 𝐹:{∅}⟶𝑋)) |
8 | 0ex 5302 | . . . . . 6 ⊢ ∅ ∈ V | |
9 | 8 | fsn2 7141 | . . . . 5 ⊢ (𝐹:{∅}⟶𝑋 ↔ ((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {⟨∅, (𝐹‘∅)⟩})) |
10 | opeq2 4870 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘∅) → ⟨∅, 𝑥⟩ = ⟨∅, (𝐹‘∅)⟩) | |
11 | 10 | sneqd 4636 | . . . . . 6 ⊢ (𝑥 = (𝐹‘∅) → {⟨∅, 𝑥⟩} = {⟨∅, (𝐹‘∅)⟩}) |
12 | 11 | rspceeqv 3623 | . . . . 5 ⊢ (((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {⟨∅, (𝐹‘∅)⟩}) → ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩}) |
13 | 9, 12 | sylbi 216 | . . . 4 ⊢ (𝐹:{∅}⟶𝑋 → ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩}) |
14 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → ∅ ∈ V) |
15 | id 22 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋) | |
16 | 14, 15 | fsnd 6877 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → {⟨∅, 𝑥⟩}:{∅}⟶𝑋) |
17 | feq1 6698 | . . . . . 6 ⊢ (𝐹 = {⟨∅, 𝑥⟩} → (𝐹:{∅}⟶𝑋 ↔ {⟨∅, 𝑥⟩}:{∅}⟶𝑋)) | |
18 | 16, 17 | syl5ibrcom 246 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → (𝐹 = {⟨∅, 𝑥⟩} → 𝐹:{∅}⟶𝑋)) |
19 | 18 | rexlimiv 3138 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩} → 𝐹:{∅}⟶𝑋) |
20 | 13, 19 | impbii 208 | . . 3 ⊢ (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩}) |
21 | 20 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩})) |
22 | 5, 7, 21 | 3bitrd 304 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∃wrex 3060 Vcvv 3463 ∅c0 4318 {csn 4624 ⟨cop 4630 ⟶wf 6539 ‘cfv 6543 (class class class)co 7416 ↑m cmap 8843 0cc0 11138 ℕ0cn0 12502 ..^cfzo 13659 -aryF cnaryf 47811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-map 8845 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-fzo 13660 df-naryf 47812 |
This theorem is referenced by: 0aryfvalelfv 47820 |
Copyright terms: Public domain | W3C validator |