Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0aryfvalel | Structured version Visualization version GIF version |
Description: A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶 ∈ 𝑋, see also 0aryfvalelfv 45869. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.) |
Ref | Expression |
---|---|
0aryfvalel | ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12178 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | fzo0 13339 | . . . . 5 ⊢ (0..^0) = ∅ | |
3 | 2 | eqcomi 2747 | . . . 4 ⊢ ∅ = (0..^0) |
4 | 3 | naryfvalel 45864 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
5 | 1, 4 | mpan 686 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
6 | mapdm0 8588 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ↑m ∅) = {∅}) | |
7 | 6 | feq2d 6570 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:(𝑋 ↑m ∅)⟶𝑋 ↔ 𝐹:{∅}⟶𝑋)) |
8 | 0ex 5226 | . . . . . 6 ⊢ ∅ ∈ V | |
9 | 8 | fsn2 6990 | . . . . 5 ⊢ (𝐹:{∅}⟶𝑋 ↔ ((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {〈∅, (𝐹‘∅)〉})) |
10 | opeq2 4802 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘∅) → 〈∅, 𝑥〉 = 〈∅, (𝐹‘∅)〉) | |
11 | 10 | sneqd 4570 | . . . . . 6 ⊢ (𝑥 = (𝐹‘∅) → {〈∅, 𝑥〉} = {〈∅, (𝐹‘∅)〉}) |
12 | 11 | rspceeqv 3567 | . . . . 5 ⊢ (((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {〈∅, (𝐹‘∅)〉}) → ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
13 | 9, 12 | sylbi 216 | . . . 4 ⊢ (𝐹:{∅}⟶𝑋 → ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
14 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → ∅ ∈ V) |
15 | id 22 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋) | |
16 | 14, 15 | fsnd 6742 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → {〈∅, 𝑥〉}:{∅}⟶𝑋) |
17 | feq1 6565 | . . . . . 6 ⊢ (𝐹 = {〈∅, 𝑥〉} → (𝐹:{∅}⟶𝑋 ↔ {〈∅, 𝑥〉}:{∅}⟶𝑋)) | |
18 | 16, 17 | syl5ibrcom 246 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → (𝐹 = {〈∅, 𝑥〉} → 𝐹:{∅}⟶𝑋)) |
19 | 18 | rexlimiv 3208 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉} → 𝐹:{∅}⟶𝑋) |
20 | 13, 19 | impbii 208 | . . 3 ⊢ (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
21 | 20 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
22 | 5, 7, 21 | 3bitrd 304 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∅c0 4253 {csn 4558 〈cop 4564 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 0cc0 10802 ℕ0cn0 12163 ..^cfzo 13311 -aryF cnaryf 45860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-naryf 45861 |
This theorem is referenced by: 0aryfvalelfv 45869 |
Copyright terms: Public domain | W3C validator |