| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 0aryfvalel | Structured version Visualization version GIF version | ||
| Description: A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶 ∈ 𝑋, see also 0aryfvalelfv 48675. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.) |
| Ref | Expression |
|---|---|
| 0aryfvalel | ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0nn0 12396 | . . 3 ⊢ 0 ∈ ℕ0 | |
| 2 | fzo0 13583 | . . . . 5 ⊢ (0..^0) = ∅ | |
| 3 | 2 | eqcomi 2740 | . . . 4 ⊢ ∅ = (0..^0) |
| 4 | 3 | naryfvalel 48670 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
| 5 | 1, 4 | mpan 690 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
| 6 | mapdm0 8766 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ↑m ∅) = {∅}) | |
| 7 | 6 | feq2d 6635 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:(𝑋 ↑m ∅)⟶𝑋 ↔ 𝐹:{∅}⟶𝑋)) |
| 8 | 0ex 5243 | . . . . . 6 ⊢ ∅ ∈ V | |
| 9 | 8 | fsn2 7069 | . . . . 5 ⊢ (𝐹:{∅}⟶𝑋 ↔ ((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {〈∅, (𝐹‘∅)〉})) |
| 10 | opeq2 4823 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘∅) → 〈∅, 𝑥〉 = 〈∅, (𝐹‘∅)〉) | |
| 11 | 10 | sneqd 4585 | . . . . . 6 ⊢ (𝑥 = (𝐹‘∅) → {〈∅, 𝑥〉} = {〈∅, (𝐹‘∅)〉}) |
| 12 | 11 | rspceeqv 3595 | . . . . 5 ⊢ (((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {〈∅, (𝐹‘∅)〉}) → ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
| 13 | 9, 12 | sylbi 217 | . . . 4 ⊢ (𝐹:{∅}⟶𝑋 → ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
| 14 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → ∅ ∈ V) |
| 15 | id 22 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋) | |
| 16 | 14, 15 | fsnd 6806 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → {〈∅, 𝑥〉}:{∅}⟶𝑋) |
| 17 | feq1 6629 | . . . . . 6 ⊢ (𝐹 = {〈∅, 𝑥〉} → (𝐹:{∅}⟶𝑋 ↔ {〈∅, 𝑥〉}:{∅}⟶𝑋)) | |
| 18 | 16, 17 | syl5ibrcom 247 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → (𝐹 = {〈∅, 𝑥〉} → 𝐹:{∅}⟶𝑋)) |
| 19 | 18 | rexlimiv 3126 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉} → 𝐹:{∅}⟶𝑋) |
| 20 | 13, 19 | impbii 209 | . . 3 ⊢ (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
| 21 | 20 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
| 22 | 5, 7, 21 | 3bitrd 305 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 Vcvv 3436 ∅c0 4280 {csn 4573 〈cop 4579 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 0cc0 11006 ℕ0cn0 12381 ..^cfzo 13554 -aryF cnaryf 48666 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-naryf 48667 |
| This theorem is referenced by: 0aryfvalelfv 48675 |
| Copyright terms: Public domain | W3C validator |