Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0aryfvalel Structured version   Visualization version   GIF version

Theorem 0aryfvalel 47819
Description: A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶𝑋, see also 0aryfvalelfv 47820. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.)
Assertion
Ref Expression
0aryfvalel (𝑋𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩}))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑉   𝑥,𝑋

Proof of Theorem 0aryfvalel
StepHypRef Expression
1 0nn0 12517 . . 3 0 ∈ ℕ0
2 fzo0 13688 . . . . 5 (0..^0) = ∅
32eqcomi 2734 . . . 4 ∅ = (0..^0)
43naryfvalel 47815 . . 3 ((0 ∈ ℕ0𝑋𝑉) → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋m ∅)⟶𝑋))
51, 4mpan 688 . 2 (𝑋𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋m ∅)⟶𝑋))
6 mapdm0 8859 . . 3 (𝑋𝑉 → (𝑋m ∅) = {∅})
76feq2d 6703 . 2 (𝑋𝑉 → (𝐹:(𝑋m ∅)⟶𝑋𝐹:{∅}⟶𝑋))
8 0ex 5302 . . . . . 6 ∅ ∈ V
98fsn2 7141 . . . . 5 (𝐹:{∅}⟶𝑋 ↔ ((𝐹‘∅) ∈ 𝑋𝐹 = {⟨∅, (𝐹‘∅)⟩}))
10 opeq2 4870 . . . . . . 7 (𝑥 = (𝐹‘∅) → ⟨∅, 𝑥⟩ = ⟨∅, (𝐹‘∅)⟩)
1110sneqd 4636 . . . . . 6 (𝑥 = (𝐹‘∅) → {⟨∅, 𝑥⟩} = {⟨∅, (𝐹‘∅)⟩})
1211rspceeqv 3623 . . . . 5 (((𝐹‘∅) ∈ 𝑋𝐹 = {⟨∅, (𝐹‘∅)⟩}) → ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩})
139, 12sylbi 216 . . . 4 (𝐹:{∅}⟶𝑋 → ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩})
148a1i 11 . . . . . . 7 (𝑥𝑋 → ∅ ∈ V)
15 id 22 . . . . . . 7 (𝑥𝑋𝑥𝑋)
1614, 15fsnd 6877 . . . . . 6 (𝑥𝑋 → {⟨∅, 𝑥⟩}:{∅}⟶𝑋)
17 feq1 6698 . . . . . 6 (𝐹 = {⟨∅, 𝑥⟩} → (𝐹:{∅}⟶𝑋 ↔ {⟨∅, 𝑥⟩}:{∅}⟶𝑋))
1816, 17syl5ibrcom 246 . . . . 5 (𝑥𝑋 → (𝐹 = {⟨∅, 𝑥⟩} → 𝐹:{∅}⟶𝑋))
1918rexlimiv 3138 . . . 4 (∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩} → 𝐹:{∅}⟶𝑋)
2013, 19impbii 208 . . 3 (𝐹:{∅}⟶𝑋 ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩})
2120a1i 11 . 2 (𝑋𝑉 → (𝐹:{∅}⟶𝑋 ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩}))
225, 7, 213bitrd 304 1 (𝑋𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wrex 3060  Vcvv 3463  c0 4318  {csn 4624  cop 4630  wf 6539  cfv 6543  (class class class)co 7416  m cmap 8843  0cc0 11138  0cn0 12502  ..^cfzo 13659  -aryF cnaryf 47811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7991  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8723  df-map 8845  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-n0 12503  df-z 12589  df-uz 12853  df-fz 13517  df-fzo 13660  df-naryf 47812
This theorem is referenced by:  0aryfvalelfv  47820
  Copyright terms: Public domain W3C validator