Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0aryfvalel | Structured version Visualization version GIF version |
Description: A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶 ∈ 𝑋, see also 0aryfvalelfv 45981. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.) |
Ref | Expression |
---|---|
0aryfvalel | ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12248 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | fzo0 13411 | . . . . 5 ⊢ (0..^0) = ∅ | |
3 | 2 | eqcomi 2747 | . . . 4 ⊢ ∅ = (0..^0) |
4 | 3 | naryfvalel 45976 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
5 | 1, 4 | mpan 687 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
6 | mapdm0 8630 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ↑m ∅) = {∅}) | |
7 | 6 | feq2d 6586 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:(𝑋 ↑m ∅)⟶𝑋 ↔ 𝐹:{∅}⟶𝑋)) |
8 | 0ex 5231 | . . . . . 6 ⊢ ∅ ∈ V | |
9 | 8 | fsn2 7008 | . . . . 5 ⊢ (𝐹:{∅}⟶𝑋 ↔ ((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {〈∅, (𝐹‘∅)〉})) |
10 | opeq2 4805 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘∅) → 〈∅, 𝑥〉 = 〈∅, (𝐹‘∅)〉) | |
11 | 10 | sneqd 4573 | . . . . . 6 ⊢ (𝑥 = (𝐹‘∅) → {〈∅, 𝑥〉} = {〈∅, (𝐹‘∅)〉}) |
12 | 11 | rspceeqv 3575 | . . . . 5 ⊢ (((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {〈∅, (𝐹‘∅)〉}) → ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
13 | 9, 12 | sylbi 216 | . . . 4 ⊢ (𝐹:{∅}⟶𝑋 → ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
14 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → ∅ ∈ V) |
15 | id 22 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋) | |
16 | 14, 15 | fsnd 6759 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → {〈∅, 𝑥〉}:{∅}⟶𝑋) |
17 | feq1 6581 | . . . . . 6 ⊢ (𝐹 = {〈∅, 𝑥〉} → (𝐹:{∅}⟶𝑋 ↔ {〈∅, 𝑥〉}:{∅}⟶𝑋)) | |
18 | 16, 17 | syl5ibrcom 246 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → (𝐹 = {〈∅, 𝑥〉} → 𝐹:{∅}⟶𝑋)) |
19 | 18 | rexlimiv 3209 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉} → 𝐹:{∅}⟶𝑋) |
20 | 13, 19 | impbii 208 | . . 3 ⊢ (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉}) |
21 | 20 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
22 | 5, 7, 21 | 3bitrd 305 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {〈∅, 𝑥〉})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 Vcvv 3432 ∅c0 4256 {csn 4561 〈cop 4567 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 0cc0 10871 ℕ0cn0 12233 ..^cfzo 13382 -aryF cnaryf 45972 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-naryf 45973 |
This theorem is referenced by: 0aryfvalelfv 45981 |
Copyright terms: Public domain | W3C validator |