Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  0aryfvalel Structured version   Visualization version   GIF version

Theorem 0aryfvalel 47600
Description: A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶𝑋, see also 0aryfvalelfv 47601. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.)
Assertion
Ref Expression
0aryfvalel (𝑋𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩}))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑉   𝑥,𝑋

Proof of Theorem 0aryfvalel
StepHypRef Expression
1 0nn0 12491 . . 3 0 ∈ ℕ0
2 fzo0 13662 . . . . 5 (0..^0) = ∅
32eqcomi 2735 . . . 4 ∅ = (0..^0)
43naryfvalel 47596 . . 3 ((0 ∈ ℕ0𝑋𝑉) → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋m ∅)⟶𝑋))
51, 4mpan 687 . 2 (𝑋𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋m ∅)⟶𝑋))
6 mapdm0 8838 . . 3 (𝑋𝑉 → (𝑋m ∅) = {∅})
76feq2d 6697 . 2 (𝑋𝑉 → (𝐹:(𝑋m ∅)⟶𝑋𝐹:{∅}⟶𝑋))
8 0ex 5300 . . . . . 6 ∅ ∈ V
98fsn2 7130 . . . . 5 (𝐹:{∅}⟶𝑋 ↔ ((𝐹‘∅) ∈ 𝑋𝐹 = {⟨∅, (𝐹‘∅)⟩}))
10 opeq2 4869 . . . . . . 7 (𝑥 = (𝐹‘∅) → ⟨∅, 𝑥⟩ = ⟨∅, (𝐹‘∅)⟩)
1110sneqd 4635 . . . . . 6 (𝑥 = (𝐹‘∅) → {⟨∅, 𝑥⟩} = {⟨∅, (𝐹‘∅)⟩})
1211rspceeqv 3628 . . . . 5 (((𝐹‘∅) ∈ 𝑋𝐹 = {⟨∅, (𝐹‘∅)⟩}) → ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩})
139, 12sylbi 216 . . . 4 (𝐹:{∅}⟶𝑋 → ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩})
148a1i 11 . . . . . . 7 (𝑥𝑋 → ∅ ∈ V)
15 id 22 . . . . . . 7 (𝑥𝑋𝑥𝑋)
1614, 15fsnd 6870 . . . . . 6 (𝑥𝑋 → {⟨∅, 𝑥⟩}:{∅}⟶𝑋)
17 feq1 6692 . . . . . 6 (𝐹 = {⟨∅, 𝑥⟩} → (𝐹:{∅}⟶𝑋 ↔ {⟨∅, 𝑥⟩}:{∅}⟶𝑋))
1816, 17syl5ibrcom 246 . . . . 5 (𝑥𝑋 → (𝐹 = {⟨∅, 𝑥⟩} → 𝐹:{∅}⟶𝑋))
1918rexlimiv 3142 . . . 4 (∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩} → 𝐹:{∅}⟶𝑋)
2013, 19impbii 208 . . 3 (𝐹:{∅}⟶𝑋 ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩})
2120a1i 11 . 2 (𝑋𝑉 → (𝐹:{∅}⟶𝑋 ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩}))
225, 7, 213bitrd 305 1 (𝑋𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥𝑋 𝐹 = {⟨∅, 𝑥⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wrex 3064  Vcvv 3468  c0 4317  {csn 4623  cop 4629  wf 6533  cfv 6537  (class class class)co 7405  m cmap 8822  0cc0 11112  0cn0 12476  ..^cfzo 13633  -aryF cnaryf 47592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-naryf 47593
This theorem is referenced by:  0aryfvalelfv  47601
  Copyright terms: Public domain W3C validator