![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 0aryfvalel | Structured version Visualization version GIF version |
Description: A nullary (endo)function on a set 𝑋 is a singleton of an ordered pair with the empty set as first component. A nullary function represents a constant: (𝐹‘∅) = 𝐶 with 𝐶 ∈ 𝑋, see also 0aryfvalelfv 47601. Instead of (𝐹‘∅), nullary functions are usually written as 𝐹() in literature. (Contributed by AV, 15-May-2024.) |
Ref | Expression |
---|---|
0aryfvalel | ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12491 | . . 3 ⊢ 0 ∈ ℕ0 | |
2 | fzo0 13662 | . . . . 5 ⊢ (0..^0) = ∅ | |
3 | 2 | eqcomi 2735 | . . . 4 ⊢ ∅ = (0..^0) |
4 | 3 | naryfvalel 47596 | . . 3 ⊢ ((0 ∈ ℕ0 ∧ 𝑋 ∈ 𝑉) → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
5 | 1, 4 | mpan 687 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ 𝐹:(𝑋 ↑m ∅)⟶𝑋)) |
6 | mapdm0 8838 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ↑m ∅) = {∅}) | |
7 | 6 | feq2d 6697 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:(𝑋 ↑m ∅)⟶𝑋 ↔ 𝐹:{∅}⟶𝑋)) |
8 | 0ex 5300 | . . . . . 6 ⊢ ∅ ∈ V | |
9 | 8 | fsn2 7130 | . . . . 5 ⊢ (𝐹:{∅}⟶𝑋 ↔ ((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {⟨∅, (𝐹‘∅)⟩})) |
10 | opeq2 4869 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘∅) → ⟨∅, 𝑥⟩ = ⟨∅, (𝐹‘∅)⟩) | |
11 | 10 | sneqd 4635 | . . . . . 6 ⊢ (𝑥 = (𝐹‘∅) → {⟨∅, 𝑥⟩} = {⟨∅, (𝐹‘∅)⟩}) |
12 | 11 | rspceeqv 3628 | . . . . 5 ⊢ (((𝐹‘∅) ∈ 𝑋 ∧ 𝐹 = {⟨∅, (𝐹‘∅)⟩}) → ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩}) |
13 | 9, 12 | sylbi 216 | . . . 4 ⊢ (𝐹:{∅}⟶𝑋 → ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩}) |
14 | 8 | a1i 11 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → ∅ ∈ V) |
15 | id 22 | . . . . . . 7 ⊢ (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝑋) | |
16 | 14, 15 | fsnd 6870 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 → {⟨∅, 𝑥⟩}:{∅}⟶𝑋) |
17 | feq1 6692 | . . . . . 6 ⊢ (𝐹 = {⟨∅, 𝑥⟩} → (𝐹:{∅}⟶𝑋 ↔ {⟨∅, 𝑥⟩}:{∅}⟶𝑋)) | |
18 | 16, 17 | syl5ibrcom 246 | . . . . 5 ⊢ (𝑥 ∈ 𝑋 → (𝐹 = {⟨∅, 𝑥⟩} → 𝐹:{∅}⟶𝑋)) |
19 | 18 | rexlimiv 3142 | . . . 4 ⊢ (∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩} → 𝐹:{∅}⟶𝑋) |
20 | 13, 19 | impbii 208 | . . 3 ⊢ (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩}) |
21 | 20 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝐹:{∅}⟶𝑋 ↔ ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩})) |
22 | 5, 7, 21 | 3bitrd 305 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝐹 ∈ (0-aryF 𝑋) ↔ ∃𝑥 ∈ 𝑋 𝐹 = {⟨∅, 𝑥⟩})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 Vcvv 3468 ∅c0 4317 {csn 4623 ⟨cop 4629 ⟶wf 6533 ‘cfv 6537 (class class class)co 7405 ↑m cmap 8822 0cc0 11112 ℕ0cn0 12476 ..^cfzo 13633 -aryF cnaryf 47592 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-map 8824 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-fz 13491 df-fzo 13634 df-naryf 47593 |
This theorem is referenced by: 0aryfvalelfv 47601 |
Copyright terms: Public domain | W3C validator |