MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3 Structured version   Visualization version   GIF version

Theorem 2lgslem3 26658
Description: Lemma 3 for 2lgs 26661. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))

Proof of Theorem 2lgslem3
StepHypRef Expression
1 nnz 12448 . . 3 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
2 lgsdir2lem3 26581 . . 3 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}))
31, 2sylan 581 . 2 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}))
4 elun 4100 . . 3 ((𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝑃 mod 8) ∈ {1, 7} ∨ (𝑃 mod 8) ∈ {3, 5}))
5 ovex 7375 . . . . . . . . 9 (𝑃 mod 8) ∈ V
65elpr 4601 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))
7 2lgslem2.n . . . . . . . . . . . . 13 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
872lgslem3a1 26654 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
98a1d 25 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0))
109expcom 415 . . . . . . . . . 10 ((𝑃 mod 8) = 1 → (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0)))
1110impd 412 . . . . . . . . 9 ((𝑃 mod 8) = 1 → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1272lgslem3d1 26657 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
1312a1d 25 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0))
1413expcom 415 . . . . . . . . . 10 ((𝑃 mod 8) = 7 → (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0)))
1514impd 412 . . . . . . . . 9 ((𝑃 mod 8) = 7 → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1611, 15jaoi 855 . . . . . . . 8 (((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
176, 16sylbi 216 . . . . . . 7 ((𝑃 mod 8) ∈ {1, 7} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1817imp 408 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (𝑁 mod 2) = 0)
19 iftrue 4484 . . . . . . 7 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
2019adantr 482 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
2118, 20eqtr4d 2780 . . . . 5 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
2221ex 414 . . . 4 ((𝑃 mod 8) ∈ {1, 7} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
235elpr 4601 . . . . 5 ((𝑃 mod 8) ∈ {3, 5} ↔ ((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5))
2472lgslem3b1 26655 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
2524expcom 415 . . . . . . . . . 10 ((𝑃 mod 8) = 3 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2672lgslem3c1 26656 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
2726expcom 415 . . . . . . . . . 10 ((𝑃 mod 8) = 5 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2825, 27jaoi 855 . . . . . . . . 9 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2928imp 408 . . . . . . . 8 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = 1)
30 1re 11081 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
31 1lt3 12252 . . . . . . . . . . . . . . . 16 1 < 3
3230, 31ltneii 11194 . . . . . . . . . . . . . . 15 1 ≠ 3
3332nesymi 2999 . . . . . . . . . . . . . 14 ¬ 3 = 1
34 3re 12159 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
35 3lt7 12268 . . . . . . . . . . . . . . . 16 3 < 7
3634, 35ltneii 11194 . . . . . . . . . . . . . . 15 3 ≠ 7
3736neii 2943 . . . . . . . . . . . . . 14 ¬ 3 = 7
3833, 37pm3.2i 472 . . . . . . . . . . . . 13 (¬ 3 = 1 ∧ ¬ 3 = 7)
39 eqeq1 2741 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 1 ↔ 3 = 1))
4039notbid 318 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 3 = 1))
41 eqeq1 2741 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 7 ↔ 3 = 7))
4241notbid 318 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 3 = 7))
4340, 42anbi12d 632 . . . . . . . . . . . . 13 ((𝑃 mod 8) = 3 → ((¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7) ↔ (¬ 3 = 1 ∧ ¬ 3 = 7)))
4438, 43mpbiri 258 . . . . . . . . . . . 12 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
45 1lt5 12259 . . . . . . . . . . . . . . . 16 1 < 5
4630, 45ltneii 11194 . . . . . . . . . . . . . . 15 1 ≠ 5
4746nesymi 2999 . . . . . . . . . . . . . 14 ¬ 5 = 1
48 5re 12166 . . . . . . . . . . . . . . . 16 5 ∈ ℝ
49 5lt7 12266 . . . . . . . . . . . . . . . 16 5 < 7
5048, 49ltneii 11194 . . . . . . . . . . . . . . 15 5 ≠ 7
5150neii 2943 . . . . . . . . . . . . . 14 ¬ 5 = 7
5247, 51pm3.2i 472 . . . . . . . . . . . . 13 (¬ 5 = 1 ∧ ¬ 5 = 7)
53 eqeq1 2741 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 1 ↔ 5 = 1))
5453notbid 318 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 5 = 1))
55 eqeq1 2741 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 7 ↔ 5 = 7))
5655notbid 318 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 5 = 7))
5754, 56anbi12d 632 . . . . . . . . . . . . 13 ((𝑃 mod 8) = 5 → ((¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7) ↔ (¬ 5 = 1 ∧ ¬ 5 = 7)))
5852, 57mpbiri 258 . . . . . . . . . . . 12 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
5944, 58jaoi 855 . . . . . . . . . . 11 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6059adantr 482 . . . . . . . . . 10 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
61 ioran 982 . . . . . . . . . . 11 (¬ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) ↔ (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6261, 6xchnxbir 333 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} ↔ (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6360, 62sylibr 233 . . . . . . . . 9 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → ¬ (𝑃 mod 8) ∈ {1, 7})
6463iffalsed 4489 . . . . . . . 8 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
6529, 64eqtr4d 2780 . . . . . . 7 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
6665a1d 25 . . . . . 6 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6766expimpd 455 . . . . 5 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6823, 67sylbi 216 . . . 4 ((𝑃 mod 8) ∈ {3, 5} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6922, 68jaoi 855 . . 3 (((𝑃 mod 8) ∈ {1, 7} ∨ (𝑃 mod 8) ∈ {3, 5}) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
704, 69sylbi 216 . 2 ((𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
713, 70mpcom 38 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 397  wo 845   = wceq 1541  wcel 2106  cun 3900  ifcif 4478  {cpr 4580   class class class wbr 5097  cfv 6484  (class class class)co 7342  0cc0 10977  1c1 10978  cmin 11311   / cdiv 11738  cn 12079  2c2 12134  3c3 12135  4c4 12136  5c5 12137  7c7 12139  8c8 12140  cz 12425  cfl 13616   mod cmo 13695  cdvds 16063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pow 5313  ax-pr 5377  ax-un 7655  ax-cnex 11033  ax-resscn 11034  ax-1cn 11035  ax-icn 11036  ax-addcl 11037  ax-addrcl 11038  ax-mulcl 11039  ax-mulrcl 11040  ax-mulcom 11041  ax-addass 11042  ax-mulass 11043  ax-distr 11044  ax-i2m1 11045  ax-1ne0 11046  ax-1rid 11047  ax-rnegex 11048  ax-rrecex 11049  ax-cnre 11050  ax-pre-lttri 11051  ax-pre-lttrn 11052  ax-pre-ltadd 11053  ax-pre-mulgt0 11054  ax-pre-sup 11055
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3444  df-sbc 3732  df-csb 3848  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-iun 4948  df-br 5098  df-opab 5160  df-mpt 5181  df-tr 5215  df-id 5523  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-ima 5638  df-pred 6243  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-f1 6489  df-fo 6490  df-f1o 6491  df-fv 6492  df-riota 7298  df-ov 7345  df-oprab 7346  df-mpo 7347  df-om 7786  df-1st 7904  df-2nd 7905  df-frecs 8172  df-wrecs 8203  df-recs 8277  df-rdg 8316  df-er 8574  df-en 8810  df-dom 8811  df-sdom 8812  df-sup 9304  df-inf 9305  df-pnf 11117  df-mnf 11118  df-xr 11119  df-ltxr 11120  df-le 11121  df-sub 11313  df-neg 11314  df-div 11739  df-nn 12080  df-2 12142  df-3 12143  df-4 12144  df-5 12145  df-6 12146  df-7 12147  df-8 12148  df-n0 12340  df-z 12426  df-uz 12689  df-rp 12837  df-ico 13191  df-fz 13346  df-fl 13618  df-mod 13696  df-dvds 16064
This theorem is referenced by:  2lgs  26661
  Copyright terms: Public domain W3C validator