Proof of Theorem 2lgslem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nnz 12636 | . . 3
⊢ (𝑃 ∈ ℕ → 𝑃 ∈
ℤ) | 
| 2 |  | lgsdir2lem3 27372 | . . 3
⊢ ((𝑃 ∈ ℤ ∧ ¬ 2
∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3,
5})) | 
| 3 | 1, 2 | sylan 580 | . 2
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3,
5})) | 
| 4 |  | elun 4152 | . . 3
⊢ ((𝑃 mod 8) ∈ ({1, 7} ∪ {3,
5}) ↔ ((𝑃 mod 8)
∈ {1, 7} ∨ (𝑃 mod
8) ∈ {3, 5})) | 
| 5 |  | ovex 7465 | . . . . . . . . 9
⊢ (𝑃 mod 8) ∈
V | 
| 6 | 5 | elpr 4649 | . . . . . . . 8
⊢ ((𝑃 mod 8) ∈ {1, 7} ↔
((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7)) | 
| 7 |  | 2lgslem2.n | . . . . . . . . . . . . 13
⊢ 𝑁 = (((𝑃 − 1) / 2) −
(⌊‘(𝑃 /
4))) | 
| 8 | 7 | 2lgslem3a1 27445 | . . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0) | 
| 9 | 8 | a1d 25 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = 0)) | 
| 10 | 9 | expcom 413 | . . . . . . . . . 10
⊢ ((𝑃 mod 8) = 1 → (𝑃 ∈ ℕ → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = 0))) | 
| 11 | 10 | impd 410 | . . . . . . . . 9
⊢ ((𝑃 mod 8) = 1 → ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = 0)) | 
| 12 | 7 | 2lgslem3d1 27448 | . . . . . . . . . . . 12
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0) | 
| 13 | 12 | a1d 25 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = 0)) | 
| 14 | 13 | expcom 413 | . . . . . . . . . 10
⊢ ((𝑃 mod 8) = 7 → (𝑃 ∈ ℕ → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = 0))) | 
| 15 | 14 | impd 410 | . . . . . . . . 9
⊢ ((𝑃 mod 8) = 7 → ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = 0)) | 
| 16 | 11, 15 | jaoi 857 | . . . . . . . 8
⊢ (((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) → ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = 0)) | 
| 17 | 6, 16 | sylbi 217 | . . . . . . 7
⊢ ((𝑃 mod 8) ∈ {1, 7} →
((𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃) →
(𝑁 mod 2) =
0)) | 
| 18 | 17 | imp 406 | . . . . . 6
⊢ (((𝑃 mod 8) ∈ {1, 7} ∧
(𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃)) →
(𝑁 mod 2) =
0) | 
| 19 |  | iftrue 4530 | . . . . . . 7
⊢ ((𝑃 mod 8) ∈ {1, 7} →
if((𝑃 mod 8) ∈ {1, 7},
0, 1) = 0) | 
| 20 | 19 | adantr 480 | . . . . . 6
⊢ (((𝑃 mod 8) ∈ {1, 7} ∧
(𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃)) →
if((𝑃 mod 8) ∈ {1, 7},
0, 1) = 0) | 
| 21 | 18, 20 | eqtr4d 2779 | . . . . 5
⊢ (((𝑃 mod 8) ∈ {1, 7} ∧
(𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃)) →
(𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1)) | 
| 22 | 21 | ex 412 | . . . 4
⊢ ((𝑃 mod 8) ∈ {1, 7} →
((𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃) →
(𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) | 
| 23 | 5 | elpr 4649 | . . . . 5
⊢ ((𝑃 mod 8) ∈ {3, 5} ↔
((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5)) | 
| 24 | 7 | 2lgslem3b1 27446 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1) | 
| 25 | 24 | expcom 413 | . . . . . . . . . 10
⊢ ((𝑃 mod 8) = 3 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1)) | 
| 26 | 7 | 2lgslem3c1 27447 | . . . . . . . . . . 11
⊢ ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1) | 
| 27 | 26 | expcom 413 | . . . . . . . . . 10
⊢ ((𝑃 mod 8) = 5 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1)) | 
| 28 | 25, 27 | jaoi 857 | . . . . . . . . 9
⊢ (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1)) | 
| 29 | 28 | imp 406 | . . . . . . . 8
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = 1) | 
| 30 |  | 1re 11262 | . . . . . . . . . . . . . . . 16
⊢ 1 ∈
ℝ | 
| 31 |  | 1lt3 12440 | . . . . . . . . . . . . . . . 16
⊢ 1 <
3 | 
| 32 | 30, 31 | ltneii 11375 | . . . . . . . . . . . . . . 15
⊢ 1 ≠
3 | 
| 33 | 32 | nesymi 2997 | . . . . . . . . . . . . . 14
⊢  ¬ 3
= 1 | 
| 34 |  | 3re 12347 | . . . . . . . . . . . . . . . 16
⊢ 3 ∈
ℝ | 
| 35 |  | 3lt7 12456 | . . . . . . . . . . . . . . . 16
⊢ 3 <
7 | 
| 36 | 34, 35 | ltneii 11375 | . . . . . . . . . . . . . . 15
⊢ 3 ≠
7 | 
| 37 | 36 | neii 2941 | . . . . . . . . . . . . . 14
⊢  ¬ 3
= 7 | 
| 38 | 33, 37 | pm3.2i 470 | . . . . . . . . . . . . 13
⊢ (¬ 3
= 1 ∧ ¬ 3 = 7) | 
| 39 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 1 ↔ 3 =
1)) | 
| 40 | 39 | notbid 318 | . . . . . . . . . . . . . 14
⊢ ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 3 =
1)) | 
| 41 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 7 ↔ 3 =
7)) | 
| 42 | 41 | notbid 318 | . . . . . . . . . . . . . 14
⊢ ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 3 =
7)) | 
| 43 | 40, 42 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ ((𝑃 mod 8) = 3 → ((¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) = 7) ↔
(¬ 3 = 1 ∧ ¬ 3 = 7))) | 
| 44 | 38, 43 | mpbiri 258 | . . . . . . . . . . . 12
⊢ ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7)) | 
| 45 |  | 1lt5 12447 | . . . . . . . . . . . . . . . 16
⊢ 1 <
5 | 
| 46 | 30, 45 | ltneii 11375 | . . . . . . . . . . . . . . 15
⊢ 1 ≠
5 | 
| 47 | 46 | nesymi 2997 | . . . . . . . . . . . . . 14
⊢  ¬ 5
= 1 | 
| 48 |  | 5re 12354 | . . . . . . . . . . . . . . . 16
⊢ 5 ∈
ℝ | 
| 49 |  | 5lt7 12454 | . . . . . . . . . . . . . . . 16
⊢ 5 <
7 | 
| 50 | 48, 49 | ltneii 11375 | . . . . . . . . . . . . . . 15
⊢ 5 ≠
7 | 
| 51 | 50 | neii 2941 | . . . . . . . . . . . . . 14
⊢  ¬ 5
= 7 | 
| 52 | 47, 51 | pm3.2i 470 | . . . . . . . . . . . . 13
⊢ (¬ 5
= 1 ∧ ¬ 5 = 7) | 
| 53 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 1 ↔ 5 =
1)) | 
| 54 | 53 | notbid 318 | . . . . . . . . . . . . . 14
⊢ ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 5 =
1)) | 
| 55 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 7 ↔ 5 =
7)) | 
| 56 | 55 | notbid 318 | . . . . . . . . . . . . . 14
⊢ ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 5 =
7)) | 
| 57 | 54, 56 | anbi12d 632 | . . . . . . . . . . . . 13
⊢ ((𝑃 mod 8) = 5 → ((¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) = 7) ↔
(¬ 5 = 1 ∧ ¬ 5 = 7))) | 
| 58 | 52, 57 | mpbiri 258 | . . . . . . . . . . . 12
⊢ ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7)) | 
| 59 | 44, 58 | jaoi 857 | . . . . . . . . . . 11
⊢ (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) =
7)) | 
| 60 | 59 | adantr 480 | . . . . . . . . . 10
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) =
7)) | 
| 61 |  | ioran 985 | . . . . . . . . . . 11
⊢ (¬
((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) ↔ (¬
(𝑃 mod 8) = 1 ∧ ¬
(𝑃 mod 8) =
7)) | 
| 62 | 61, 6 | xchnxbir 333 | . . . . . . . . . 10
⊢ (¬
(𝑃 mod 8) ∈ {1, 7}
↔ (¬ (𝑃 mod 8) = 1
∧ ¬ (𝑃 mod 8) =
7)) | 
| 63 | 60, 62 | sylibr 234 | . . . . . . . . 9
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → ¬
(𝑃 mod 8) ∈ {1,
7}) | 
| 64 | 63 | iffalsed 4535 | . . . . . . . 8
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) →
if((𝑃 mod 8) ∈ {1, 7},
0, 1) = 1) | 
| 65 | 29, 64 | eqtr4d 2779 | . . . . . . 7
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1)) | 
| 66 | 65 | a1d 25 | . . . . . 6
⊢ ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ 2
∥ 𝑃 → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) | 
| 67 | 66 | expimpd 453 | . . . . 5
⊢ (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) | 
| 68 | 23, 67 | sylbi 217 | . . . 4
⊢ ((𝑃 mod 8) ∈ {3, 5} →
((𝑃 ∈ ℕ ∧
¬ 2 ∥ 𝑃) →
(𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) | 
| 69 | 22, 68 | jaoi 857 | . . 3
⊢ (((𝑃 mod 8) ∈ {1, 7} ∨
(𝑃 mod 8) ∈ {3, 5})
→ ((𝑃 ∈ ℕ
∧ ¬ 2 ∥ 𝑃)
→ (𝑁 mod 2) =
if((𝑃 mod 8) ∈ {1, 7},
0, 1))) | 
| 70 | 4, 69 | sylbi 217 | . 2
⊢ ((𝑃 mod 8) ∈ ({1, 7} ∪ {3,
5}) → ((𝑃 ∈
ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1))) | 
| 71 | 3, 70 | mpcom 38 | 1
⊢ ((𝑃 ∈ ℕ ∧ ¬ 2
∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0,
1)) |