MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3 Structured version   Visualization version   GIF version

Theorem 2lgslem3 27372
Description: Lemma 3 for 2lgs 27375. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))

Proof of Theorem 2lgslem3
StepHypRef Expression
1 nnz 12614 . . 3 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
2 lgsdir2lem3 27295 . . 3 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}))
31, 2sylan 580 . 2 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}))
4 elun 4133 . . 3 ((𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝑃 mod 8) ∈ {1, 7} ∨ (𝑃 mod 8) ∈ {3, 5}))
5 ovex 7443 . . . . . . . . 9 (𝑃 mod 8) ∈ V
65elpr 4631 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))
7 2lgslem2.n . . . . . . . . . . . . 13 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
872lgslem3a1 27368 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
98a1d 25 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0))
109expcom 413 . . . . . . . . . 10 ((𝑃 mod 8) = 1 → (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0)))
1110impd 410 . . . . . . . . 9 ((𝑃 mod 8) = 1 → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1272lgslem3d1 27371 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
1312a1d 25 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0))
1413expcom 413 . . . . . . . . . 10 ((𝑃 mod 8) = 7 → (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0)))
1514impd 410 . . . . . . . . 9 ((𝑃 mod 8) = 7 → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1611, 15jaoi 857 . . . . . . . 8 (((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
176, 16sylbi 217 . . . . . . 7 ((𝑃 mod 8) ∈ {1, 7} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1817imp 406 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (𝑁 mod 2) = 0)
19 iftrue 4511 . . . . . . 7 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
2019adantr 480 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
2118, 20eqtr4d 2774 . . . . 5 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
2221ex 412 . . . 4 ((𝑃 mod 8) ∈ {1, 7} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
235elpr 4631 . . . . 5 ((𝑃 mod 8) ∈ {3, 5} ↔ ((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5))
2472lgslem3b1 27369 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
2524expcom 413 . . . . . . . . . 10 ((𝑃 mod 8) = 3 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2672lgslem3c1 27370 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
2726expcom 413 . . . . . . . . . 10 ((𝑃 mod 8) = 5 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2825, 27jaoi 857 . . . . . . . . 9 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2928imp 406 . . . . . . . 8 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = 1)
30 1re 11240 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
31 1lt3 12418 . . . . . . . . . . . . . . . 16 1 < 3
3230, 31ltneii 11353 . . . . . . . . . . . . . . 15 1 ≠ 3
3332nesymi 2990 . . . . . . . . . . . . . 14 ¬ 3 = 1
34 3re 12325 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
35 3lt7 12434 . . . . . . . . . . . . . . . 16 3 < 7
3634, 35ltneii 11353 . . . . . . . . . . . . . . 15 3 ≠ 7
3736neii 2935 . . . . . . . . . . . . . 14 ¬ 3 = 7
3833, 37pm3.2i 470 . . . . . . . . . . . . 13 (¬ 3 = 1 ∧ ¬ 3 = 7)
39 eqeq1 2740 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 1 ↔ 3 = 1))
4039notbid 318 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 3 = 1))
41 eqeq1 2740 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 7 ↔ 3 = 7))
4241notbid 318 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 3 = 7))
4340, 42anbi12d 632 . . . . . . . . . . . . 13 ((𝑃 mod 8) = 3 → ((¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7) ↔ (¬ 3 = 1 ∧ ¬ 3 = 7)))
4438, 43mpbiri 258 . . . . . . . . . . . 12 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
45 1lt5 12425 . . . . . . . . . . . . . . . 16 1 < 5
4630, 45ltneii 11353 . . . . . . . . . . . . . . 15 1 ≠ 5
4746nesymi 2990 . . . . . . . . . . . . . 14 ¬ 5 = 1
48 5re 12332 . . . . . . . . . . . . . . . 16 5 ∈ ℝ
49 5lt7 12432 . . . . . . . . . . . . . . . 16 5 < 7
5048, 49ltneii 11353 . . . . . . . . . . . . . . 15 5 ≠ 7
5150neii 2935 . . . . . . . . . . . . . 14 ¬ 5 = 7
5247, 51pm3.2i 470 . . . . . . . . . . . . 13 (¬ 5 = 1 ∧ ¬ 5 = 7)
53 eqeq1 2740 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 1 ↔ 5 = 1))
5453notbid 318 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 5 = 1))
55 eqeq1 2740 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 7 ↔ 5 = 7))
5655notbid 318 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 5 = 7))
5754, 56anbi12d 632 . . . . . . . . . . . . 13 ((𝑃 mod 8) = 5 → ((¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7) ↔ (¬ 5 = 1 ∧ ¬ 5 = 7)))
5852, 57mpbiri 258 . . . . . . . . . . . 12 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
5944, 58jaoi 857 . . . . . . . . . . 11 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6059adantr 480 . . . . . . . . . 10 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
61 ioran 985 . . . . . . . . . . 11 (¬ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) ↔ (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6261, 6xchnxbir 333 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} ↔ (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6360, 62sylibr 234 . . . . . . . . 9 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → ¬ (𝑃 mod 8) ∈ {1, 7})
6463iffalsed 4516 . . . . . . . 8 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
6529, 64eqtr4d 2774 . . . . . . 7 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
6665a1d 25 . . . . . 6 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6766expimpd 453 . . . . 5 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6823, 67sylbi 217 . . . 4 ((𝑃 mod 8) ∈ {3, 5} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6922, 68jaoi 857 . . 3 (((𝑃 mod 8) ∈ {1, 7} ∨ (𝑃 mod 8) ∈ {3, 5}) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
704, 69sylbi 217 . 2 ((𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
713, 70mpcom 38 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  cun 3929  ifcif 4505  {cpr 4608   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  3c3 12301  4c4 12302  5c5 12303  7c7 12305  8c8 12306  cz 12593  cfl 13812   mod cmo 13891  cdvds 16277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-fz 13530  df-fl 13814  df-mod 13892  df-dvds 16278
This theorem is referenced by:  2lgs  27375
  Copyright terms: Public domain W3C validator