MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem3 Structured version   Visualization version   GIF version

Theorem 2lgslem3 25980
Description: Lemma 3 for 2lgs 25983. (Contributed by AV, 16-Jul-2021.)
Hypothesis
Ref Expression
2lgslem2.n 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
Assertion
Ref Expression
2lgslem3 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))

Proof of Theorem 2lgslem3
StepHypRef Expression
1 nnz 12005 . . 3 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
2 lgsdir2lem3 25903 . . 3 ((𝑃 ∈ ℤ ∧ ¬ 2 ∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}))
31, 2sylan 582 . 2 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}))
4 elun 4125 . . 3 ((𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}) ↔ ((𝑃 mod 8) ∈ {1, 7} ∨ (𝑃 mod 8) ∈ {3, 5}))
5 ovex 7189 . . . . . . . . 9 (𝑃 mod 8) ∈ V
65elpr 4590 . . . . . . . 8 ((𝑃 mod 8) ∈ {1, 7} ↔ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7))
7 2lgslem2.n . . . . . . . . . . . . 13 𝑁 = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4)))
872lgslem3a1 25976 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (𝑁 mod 2) = 0)
98a1d 25 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 1) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0))
109expcom 416 . . . . . . . . . 10 ((𝑃 mod 8) = 1 → (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0)))
1110impd 413 . . . . . . . . 9 ((𝑃 mod 8) = 1 → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1272lgslem3d1 25979 . . . . . . . . . . . 12 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (𝑁 mod 2) = 0)
1312a1d 25 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 7) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0))
1413expcom 416 . . . . . . . . . 10 ((𝑃 mod 8) = 7 → (𝑃 ∈ ℕ → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = 0)))
1514impd 413 . . . . . . . . 9 ((𝑃 mod 8) = 7 → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1611, 15jaoi 853 . . . . . . . 8 (((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
176, 16sylbi 219 . . . . . . 7 ((𝑃 mod 8) ∈ {1, 7} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = 0))
1817imp 409 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (𝑁 mod 2) = 0)
19 iftrue 4473 . . . . . . 7 ((𝑃 mod 8) ∈ {1, 7} → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
2019adantr 483 . . . . . 6 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 0)
2118, 20eqtr4d 2859 . . . . 5 (((𝑃 mod 8) ∈ {1, 7} ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
2221ex 415 . . . 4 ((𝑃 mod 8) ∈ {1, 7} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
235elpr 4590 . . . . 5 ((𝑃 mod 8) ∈ {3, 5} ↔ ((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5))
2472lgslem3b1 25977 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 3) → (𝑁 mod 2) = 1)
2524expcom 416 . . . . . . . . . 10 ((𝑃 mod 8) = 3 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2672lgslem3c1 25978 . . . . . . . . . . 11 ((𝑃 ∈ ℕ ∧ (𝑃 mod 8) = 5) → (𝑁 mod 2) = 1)
2726expcom 416 . . . . . . . . . 10 ((𝑃 mod 8) = 5 → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2825, 27jaoi 853 . . . . . . . . 9 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (𝑃 ∈ ℕ → (𝑁 mod 2) = 1))
2928imp 409 . . . . . . . 8 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = 1)
30 1re 10641 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
31 1lt3 11811 . . . . . . . . . . . . . . . 16 1 < 3
3230, 31ltneii 10753 . . . . . . . . . . . . . . 15 1 ≠ 3
3332nesymi 3073 . . . . . . . . . . . . . 14 ¬ 3 = 1
34 3re 11718 . . . . . . . . . . . . . . . 16 3 ∈ ℝ
35 3lt7 11827 . . . . . . . . . . . . . . . 16 3 < 7
3634, 35ltneii 10753 . . . . . . . . . . . . . . 15 3 ≠ 7
3736neii 3018 . . . . . . . . . . . . . 14 ¬ 3 = 7
3833, 37pm3.2i 473 . . . . . . . . . . . . 13 (¬ 3 = 1 ∧ ¬ 3 = 7)
39 eqeq1 2825 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 1 ↔ 3 = 1))
4039notbid 320 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 3 = 1))
41 eqeq1 2825 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 3 → ((𝑃 mod 8) = 7 ↔ 3 = 7))
4241notbid 320 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 3 = 7))
4340, 42anbi12d 632 . . . . . . . . . . . . 13 ((𝑃 mod 8) = 3 → ((¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7) ↔ (¬ 3 = 1 ∧ ¬ 3 = 7)))
4438, 43mpbiri 260 . . . . . . . . . . . 12 ((𝑃 mod 8) = 3 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
45 1lt5 11818 . . . . . . . . . . . . . . . 16 1 < 5
4630, 45ltneii 10753 . . . . . . . . . . . . . . 15 1 ≠ 5
4746nesymi 3073 . . . . . . . . . . . . . 14 ¬ 5 = 1
48 5re 11725 . . . . . . . . . . . . . . . 16 5 ∈ ℝ
49 5lt7 11825 . . . . . . . . . . . . . . . 16 5 < 7
5048, 49ltneii 10753 . . . . . . . . . . . . . . 15 5 ≠ 7
5150neii 3018 . . . . . . . . . . . . . 14 ¬ 5 = 7
5247, 51pm3.2i 473 . . . . . . . . . . . . 13 (¬ 5 = 1 ∧ ¬ 5 = 7)
53 eqeq1 2825 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 1 ↔ 5 = 1))
5453notbid 320 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ↔ ¬ 5 = 1))
55 eqeq1 2825 . . . . . . . . . . . . . . 15 ((𝑃 mod 8) = 5 → ((𝑃 mod 8) = 7 ↔ 5 = 7))
5655notbid 320 . . . . . . . . . . . . . 14 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 7 ↔ ¬ 5 = 7))
5754, 56anbi12d 632 . . . . . . . . . . . . 13 ((𝑃 mod 8) = 5 → ((¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7) ↔ (¬ 5 = 1 ∧ ¬ 5 = 7)))
5852, 57mpbiri 260 . . . . . . . . . . . 12 ((𝑃 mod 8) = 5 → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
5944, 58jaoi 853 . . . . . . . . . . 11 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6059adantr 483 . . . . . . . . . 10 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
61 ioran 980 . . . . . . . . . . 11 (¬ ((𝑃 mod 8) = 1 ∨ (𝑃 mod 8) = 7) ↔ (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6261, 6xchnxbir 335 . . . . . . . . . 10 (¬ (𝑃 mod 8) ∈ {1, 7} ↔ (¬ (𝑃 mod 8) = 1 ∧ ¬ (𝑃 mod 8) = 7))
6360, 62sylibr 236 . . . . . . . . 9 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → ¬ (𝑃 mod 8) ∈ {1, 7})
6463iffalsed 4478 . . . . . . . 8 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → if((𝑃 mod 8) ∈ {1, 7}, 0, 1) = 1)
6529, 64eqtr4d 2859 . . . . . . 7 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
6665a1d 25 . . . . . 6 ((((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) ∧ 𝑃 ∈ ℕ) → (¬ 2 ∥ 𝑃 → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6766expimpd 456 . . . . 5 (((𝑃 mod 8) = 3 ∨ (𝑃 mod 8) = 5) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6823, 67sylbi 219 . . . 4 ((𝑃 mod 8) ∈ {3, 5} → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
6922, 68jaoi 853 . . 3 (((𝑃 mod 8) ∈ {1, 7} ∨ (𝑃 mod 8) ∈ {3, 5}) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
704, 69sylbi 219 . 2 ((𝑃 mod 8) ∈ ({1, 7} ∪ {3, 5}) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1)))
713, 70mpcom 38 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑁 mod 2) = if((𝑃 mod 8) ∈ {1, 7}, 0, 1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  cun 3934  ifcif 4467  {cpr 4569   class class class wbr 5066  cfv 6355  (class class class)co 7156  0cc0 10537  1c1 10538  cmin 10870   / cdiv 11297  cn 11638  2c2 11693  3c3 11694  4c4 11695  5c5 11696  7c7 11698  8c8 11699  cz 11982  cfl 13161   mod cmo 13238  cdvds 15607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-pre-sup 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-sup 8906  df-inf 8907  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-n0 11899  df-z 11983  df-uz 12245  df-rp 12391  df-ico 12745  df-fz 12894  df-fl 13163  df-mod 13239  df-dvds 15608
This theorem is referenced by:  2lgs  25983
  Copyright terms: Public domain W3C validator