MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlknon1sn Structured version   Visualization version   GIF version

Theorem clwwlknon1sn 28183
Description: The set of (closed) walks on vertex 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋 iff there is a loop at 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.)
Hypotheses
Ref Expression
clwwlknon1.v 𝑉 = (Vtx‘𝐺)
clwwlknon1.c 𝐶 = (ClWWalksNOn‘𝐺)
clwwlknon1.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
clwwlknon1sn (𝑋𝑉 → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ {𝑋} ∈ 𝐸))

Proof of Theorem clwwlknon1sn
StepHypRef Expression
1 df-nel 3047 . . . 4 ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸)
2 clwwlknon1.v . . . . . . . 8 𝑉 = (Vtx‘𝐺)
3 clwwlknon1.c . . . . . . . 8 𝐶 = (ClWWalksNOn‘𝐺)
4 clwwlknon1.e . . . . . . . 8 𝐸 = (Edg‘𝐺)
52, 3, 4clwwlknon1nloop 28182 . . . . . . 7 ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅)
65adantl 485 . . . . . 6 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅)
7 s1cli 14162 . . . . . . . . . 10 ⟨“𝑋”⟩ ∈ Word V
87elexi 3427 . . . . . . . . 9 ⟨“𝑋”⟩ ∈ V
98snnz 4692 . . . . . . . 8 {⟨“𝑋”⟩} ≠ ∅
109nesymi 2998 . . . . . . 7 ¬ ∅ = {⟨“𝑋”⟩}
11 eqeq1 2741 . . . . . . 7 ((𝑋𝐶1) = ∅ → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ ∅ = {⟨“𝑋”⟩}))
1210, 11mtbiri 330 . . . . . 6 ((𝑋𝐶1) = ∅ → ¬ (𝑋𝐶1) = {⟨“𝑋”⟩})
136, 12syl 17 . . . . 5 ((𝑋𝑉 ∧ {𝑋} ∉ 𝐸) → ¬ (𝑋𝐶1) = {⟨“𝑋”⟩})
1413ex 416 . . . 4 (𝑋𝑉 → ({𝑋} ∉ 𝐸 → ¬ (𝑋𝐶1) = {⟨“𝑋”⟩}))
151, 14syl5bir 246 . . 3 (𝑋𝑉 → (¬ {𝑋} ∈ 𝐸 → ¬ (𝑋𝐶1) = {⟨“𝑋”⟩}))
1615con4d 115 . 2 (𝑋𝑉 → ((𝑋𝐶1) = {⟨“𝑋”⟩} → {𝑋} ∈ 𝐸))
172, 3, 4clwwlknon1loop 28181 . . 3 ((𝑋𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {⟨“𝑋”⟩})
1817ex 416 . 2 (𝑋𝑉 → ({𝑋} ∈ 𝐸 → (𝑋𝐶1) = {⟨“𝑋”⟩}))
1916, 18impbid 215 1 (𝑋𝑉 → ((𝑋𝐶1) = {⟨“𝑋”⟩} ↔ {𝑋} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wnel 3046  Vcvv 3408  c0 4237  {csn 4541  cfv 6380  (class class class)co 7213  1c1 10730  Word cword 14069  ⟨“cs1 14152  Vtxcvtx 27087  Edgcedg 27138  ClWWalksNOncclwwlknon 28170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-oadd 8206  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-xnn0 12163  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-hash 13897  df-word 14070  df-lsw 14118  df-s1 14153  df-clwwlk 28065  df-clwwlkn 28108  df-clwwlknon 28171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator