![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clwwlknon1sn | Structured version Visualization version GIF version |
Description: The set of (closed) walks on vertex 𝑋 of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of 𝑋 iff there is a loop at 𝑋. (Contributed by AV, 11-Feb-2022.) (Revised by AV, 25-Feb-2022.) |
Ref | Expression |
---|---|
clwwlknon1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
clwwlknon1.c | ⊢ 𝐶 = (ClWWalksNOn‘𝐺) |
clwwlknon1.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
clwwlknon1sn | ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑋} ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3037 | . . . 4 ⊢ ({𝑋} ∉ 𝐸 ↔ ¬ {𝑋} ∈ 𝐸) | |
2 | clwwlknon1.v | . . . . . . . 8 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | clwwlknon1.c | . . . . . . . 8 ⊢ 𝐶 = (ClWWalksNOn‘𝐺) | |
4 | clwwlknon1.e | . . . . . . . 8 ⊢ 𝐸 = (Edg‘𝐺) | |
5 | 2, 3, 4 | clwwlknon1nloop 30026 | . . . . . . 7 ⊢ ({𝑋} ∉ 𝐸 → (𝑋𝐶1) = ∅) |
6 | 5 | adantl 480 | . . . . . 6 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → (𝑋𝐶1) = ∅) |
7 | s1cli 14605 | . . . . . . . . . 10 ⊢ 〈“𝑋”〉 ∈ Word V | |
8 | 7 | elexi 3484 | . . . . . . . . 9 ⊢ 〈“𝑋”〉 ∈ V |
9 | 8 | snnz 4775 | . . . . . . . 8 ⊢ {〈“𝑋”〉} ≠ ∅ |
10 | 9 | nesymi 2988 | . . . . . . 7 ⊢ ¬ ∅ = {〈“𝑋”〉} |
11 | eqeq1 2730 | . . . . . . 7 ⊢ ((𝑋𝐶1) = ∅ → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ ∅ = {〈“𝑋”〉})) | |
12 | 10, 11 | mtbiri 326 | . . . . . 6 ⊢ ((𝑋𝐶1) = ∅ → ¬ (𝑋𝐶1) = {〈“𝑋”〉}) |
13 | 6, 12 | syl 17 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∉ 𝐸) → ¬ (𝑋𝐶1) = {〈“𝑋”〉}) |
14 | 13 | ex 411 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → ({𝑋} ∉ 𝐸 → ¬ (𝑋𝐶1) = {〈“𝑋”〉})) |
15 | 1, 14 | biimtrrid 242 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (¬ {𝑋} ∈ 𝐸 → ¬ (𝑋𝐶1) = {〈“𝑋”〉})) |
16 | 15 | con4d 115 | . 2 ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} → {𝑋} ∈ 𝐸)) |
17 | 2, 3, 4 | clwwlknon1loop 30025 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ {𝑋} ∈ 𝐸) → (𝑋𝐶1) = {〈“𝑋”〉}) |
18 | 17 | ex 411 | . 2 ⊢ (𝑋 ∈ 𝑉 → ({𝑋} ∈ 𝐸 → (𝑋𝐶1) = {〈“𝑋”〉})) |
19 | 16, 18 | impbid 211 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝑋𝐶1) = {〈“𝑋”〉} ↔ {𝑋} ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∉ wnel 3036 Vcvv 3462 ∅c0 4322 {csn 4623 ‘cfv 6543 (class class class)co 7413 1c1 11147 Word cword 14514 〈“cs1 14595 Vtxcvtx 28926 Edgcedg 28977 ClWWalksNOncclwwlknon 30014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-oadd 8489 df-er 8723 df-map 8846 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-card 9972 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-n0 12516 df-xnn0 12588 df-z 12602 df-uz 12866 df-fz 13530 df-fzo 13673 df-hash 14340 df-word 14515 df-lsw 14563 df-s1 14596 df-clwwlk 29909 df-clwwlkn 29952 df-clwwlknon 30015 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |