![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oddprmALTV | Structured version Visualization version GIF version |
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) |
Ref | Expression |
---|---|
oddprmALTV | ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4811 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ 𝑁 ≠ 2)) | |
2 | prmz 16722 | . . . 4 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
3 | 2 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ ℤ) |
4 | necom 3000 | . . . . . . 7 ⊢ (𝑁 ≠ 2 ↔ 2 ≠ 𝑁) | |
5 | df-ne 2947 | . . . . . . 7 ⊢ (2 ≠ 𝑁 ↔ ¬ 2 = 𝑁) | |
6 | 4, 5 | sylbb 219 | . . . . . 6 ⊢ (𝑁 ≠ 2 → ¬ 2 = 𝑁) |
7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 𝑁) |
8 | 1ne2 12501 | . . . . . . 7 ⊢ 1 ≠ 2 | |
9 | 8 | nesymi 3004 | . . . . . 6 ⊢ ¬ 2 = 1 |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 1) |
11 | ioran 984 | . . . . 5 ⊢ (¬ (2 = 𝑁 ∨ 2 = 1) ↔ (¬ 2 = 𝑁 ∧ ¬ 2 = 1)) | |
12 | 7, 10, 11 | sylanbrc 582 | . . . 4 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ (2 = 𝑁 ∨ 2 = 1)) |
13 | 2nn 12366 | . . . . . 6 ⊢ 2 ∈ ℕ | |
14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑁 ≠ 2 → 2 ∈ ℕ) |
15 | dvdsprime 16734 | . . . . 5 ⊢ ((𝑁 ∈ ℙ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1))) | |
16 | 14, 15 | sylan2 592 | . . . 4 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1))) |
17 | 12, 16 | mtbird 325 | . . 3 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 ∥ 𝑁) |
18 | isodd3 47526 | . . 3 ⊢ (𝑁 ∈ Odd ↔ (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) | |
19 | 3, 17, 18 | sylanbrc 582 | . 2 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ Odd ) |
20 | 1, 19 | sylbi 217 | 1 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 class class class wbr 5166 1c1 11185 ℕcn 12293 2c2 12348 ℤcz 12639 ∥ cdvds 16302 ℙcprime 16718 Odd codd 47499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-prm 16719 df-odd 47501 |
This theorem is referenced by: evenprm2 47588 odd2prm2 47592 even3prm2 47593 bgoldbtbndlem2 47680 bgoldbtbndlem3 47681 bgoldbtbndlem4 47682 bgoldbtbnd 47683 |
Copyright terms: Public domain | W3C validator |