| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oddprmALTV | Structured version Visualization version GIF version | ||
| Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.) |
| Ref | Expression |
|---|---|
| oddprmALTV | ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4735 | . 2 ⊢ (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ 𝑁 ≠ 2)) | |
| 2 | prmz 16586 | . . . 4 ⊢ (𝑁 ∈ ℙ → 𝑁 ∈ ℤ) | |
| 3 | 2 | adantr 480 | . . 3 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ ℤ) |
| 4 | necom 2981 | . . . . . . 7 ⊢ (𝑁 ≠ 2 ↔ 2 ≠ 𝑁) | |
| 5 | df-ne 2929 | . . . . . . 7 ⊢ (2 ≠ 𝑁 ↔ ¬ 2 = 𝑁) | |
| 6 | 4, 5 | sylbb 219 | . . . . . 6 ⊢ (𝑁 ≠ 2 → ¬ 2 = 𝑁) |
| 7 | 6 | adantl 481 | . . . . 5 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 𝑁) |
| 8 | 1ne2 12328 | . . . . . . 7 ⊢ 1 ≠ 2 | |
| 9 | 8 | nesymi 2985 | . . . . . 6 ⊢ ¬ 2 = 1 |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 1) |
| 11 | ioran 985 | . . . . 5 ⊢ (¬ (2 = 𝑁 ∨ 2 = 1) ↔ (¬ 2 = 𝑁 ∧ ¬ 2 = 1)) | |
| 12 | 7, 10, 11 | sylanbrc 583 | . . . 4 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ (2 = 𝑁 ∨ 2 = 1)) |
| 13 | 2nn 12198 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 14 | 13 | a1i 11 | . . . . 5 ⊢ (𝑁 ≠ 2 → 2 ∈ ℕ) |
| 15 | dvdsprime 16598 | . . . . 5 ⊢ ((𝑁 ∈ ℙ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1))) | |
| 16 | 14, 15 | sylan2 593 | . . . 4 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1))) |
| 17 | 12, 16 | mtbird 325 | . . 3 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 ∥ 𝑁) |
| 18 | isodd3 47691 | . . 3 ⊢ (𝑁 ∈ Odd ↔ (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁)) | |
| 19 | 3, 17, 18 | sylanbrc 583 | . 2 ⊢ ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ Odd ) |
| 20 | 1, 19 | sylbi 217 | 1 ⊢ (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4573 class class class wbr 5089 1c1 11007 ℕcn 12125 2c2 12180 ℤcz 12468 ∥ cdvds 16163 ℙcprime 16582 Odd codd 47664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 df-odd 47666 |
| This theorem is referenced by: evenprm2 47753 odd2prm2 47757 even3prm2 47758 bgoldbtbndlem2 47845 bgoldbtbndlem3 47846 bgoldbtbndlem4 47847 bgoldbtbnd 47848 |
| Copyright terms: Public domain | W3C validator |