Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oddprmALTV Structured version   Visualization version   GIF version

Theorem oddprmALTV 47688
Description: A prime not equal to 2 is odd. (Contributed by Mario Carneiro, 4-Feb-2015.) (Revised by AV, 21-Jun-2020.)
Assertion
Ref Expression
oddprmALTV (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd )

Proof of Theorem oddprmALTV
StepHypRef Expression
1 eldifsn 4750 . 2 (𝑁 ∈ (ℙ ∖ {2}) ↔ (𝑁 ∈ ℙ ∧ 𝑁 ≠ 2))
2 prmz 16645 . . . 4 (𝑁 ∈ ℙ → 𝑁 ∈ ℤ)
32adantr 480 . . 3 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ ℤ)
4 necom 2978 . . . . . . 7 (𝑁 ≠ 2 ↔ 2 ≠ 𝑁)
5 df-ne 2926 . . . . . . 7 (2 ≠ 𝑁 ↔ ¬ 2 = 𝑁)
64, 5sylbb 219 . . . . . 6 (𝑁 ≠ 2 → ¬ 2 = 𝑁)
76adantl 481 . . . . 5 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 𝑁)
8 1ne2 12389 . . . . . . 7 1 ≠ 2
98nesymi 2982 . . . . . 6 ¬ 2 = 1
109a1i 11 . . . . 5 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 = 1)
11 ioran 985 . . . . 5 (¬ (2 = 𝑁 ∨ 2 = 1) ↔ (¬ 2 = 𝑁 ∧ ¬ 2 = 1))
127, 10, 11sylanbrc 583 . . . 4 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ (2 = 𝑁 ∨ 2 = 1))
13 2nn 12259 . . . . . 6 2 ∈ ℕ
1413a1i 11 . . . . 5 (𝑁 ≠ 2 → 2 ∈ ℕ)
15 dvdsprime 16657 . . . . 5 ((𝑁 ∈ ℙ ∧ 2 ∈ ℕ) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1)))
1614, 15sylan2 593 . . . 4 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → (2 ∥ 𝑁 ↔ (2 = 𝑁 ∨ 2 = 1)))
1712, 16mtbird 325 . . 3 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → ¬ 2 ∥ 𝑁)
18 isodd3 47653 . . 3 (𝑁 ∈ Odd ↔ (𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁))
193, 17, 18sylanbrc 583 . 2 ((𝑁 ∈ ℙ ∧ 𝑁 ≠ 2) → 𝑁 ∈ Odd )
201, 19sylbi 217 1 (𝑁 ∈ (ℙ ∖ {2}) → 𝑁 ∈ Odd )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589   class class class wbr 5107  1c1 11069  cn 12186  2c2 12241  cz 12529  cdvds 16222  cprime 16641   Odd codd 47626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-prm 16642  df-odd 47628
This theorem is referenced by:  evenprm2  47715  odd2prm2  47719  even3prm2  47720  bgoldbtbndlem2  47807  bgoldbtbndlem3  47808  bgoldbtbndlem4  47809  bgoldbtbnd  47810
  Copyright terms: Public domain W3C validator