Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnnbi Structured version   Visualization version   GIF version

Theorem sgnnbi 34165
Description: Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnnbi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))

Proof of Theorem sgnnbi
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2732 . . . . 5 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = -1 ↔ 0 = -1))
32imbi1d 341 . . . 4 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (0 = -1 → 𝐴 < 0)))
4 eqeq1 2732 . . . . 5 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = -1 ↔ 1 = -1))
54imbi1d 341 . . . 4 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (1 = -1 → 𝐴 < 0)))
6 eqeq1 2732 . . . . 5 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = -1 ↔ -1 = -1))
76imbi1d 341 . . . 4 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (-1 = -1 → 𝐴 < 0)))
8 neg1ne0 12359 . . . . . . 7 -1 ≠ 0
98nesymi 2995 . . . . . 6 ¬ 0 = -1
109pm2.21i 119 . . . . 5 (0 = -1 → 𝐴 < 0)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = -1 → 𝐴 < 0))
12 neg1rr 12358 . . . . . . . 8 -1 ∈ ℝ
13 neg1lt0 12360 . . . . . . . . 9 -1 < 0
14 0lt1 11767 . . . . . . . . 9 0 < 1
15 0re 11247 . . . . . . . . . 10 0 ∈ ℝ
16 1re 11245 . . . . . . . . . 10 1 ∈ ℝ
1712, 15, 16lttri 11371 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
1813, 14, 17mp2an 691 . . . . . . . 8 -1 < 1
1912, 18gtneii 11357 . . . . . . 7 1 ≠ -1
2019neii 2939 . . . . . 6 ¬ 1 = -1
2120pm2.21i 119 . . . . 5 (1 = -1 → 𝐴 < 0)
2221a1i 11 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = -1 → 𝐴 < 0))
23 simp2 1135 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0 ∧ -1 = -1) → 𝐴 < 0)
24233expia 1119 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = -1 → 𝐴 < 0))
251, 3, 5, 7, 11, 22, 24sgn3da 34161 . . 3 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 → 𝐴 < 0))
2625imp 406 . 2 ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = -1) → 𝐴 < 0)
27 sgnn 15074 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
2826, 27impbida 800 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wcel 2099   class class class wbr 5148  cfv 6548  0cc0 11139  1c1 11140  *cxr 11278   < clt 11279  -cneg 11476  sgncsgn 15066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-po 5590  df-so 5591  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-sgn 15067
This theorem is referenced by:  sgnmulsgn  34169
  Copyright terms: Public domain W3C validator