Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnnbi Structured version   Visualization version   GIF version

Theorem sgnnbi 34064
Description: Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnnbi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))

Proof of Theorem sgnnbi
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2728 . . . . 5 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = -1 ↔ 0 = -1))
32imbi1d 341 . . . 4 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (0 = -1 → 𝐴 < 0)))
4 eqeq1 2728 . . . . 5 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = -1 ↔ 1 = -1))
54imbi1d 341 . . . 4 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (1 = -1 → 𝐴 < 0)))
6 eqeq1 2728 . . . . 5 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = -1 ↔ -1 = -1))
76imbi1d 341 . . . 4 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (-1 = -1 → 𝐴 < 0)))
8 neg1ne0 12327 . . . . . . 7 -1 ≠ 0
98nesymi 2990 . . . . . 6 ¬ 0 = -1
109pm2.21i 119 . . . . 5 (0 = -1 → 𝐴 < 0)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = -1 → 𝐴 < 0))
12 neg1rr 12326 . . . . . . . 8 -1 ∈ ℝ
13 neg1lt0 12328 . . . . . . . . 9 -1 < 0
14 0lt1 11735 . . . . . . . . 9 0 < 1
15 0re 11215 . . . . . . . . . 10 0 ∈ ℝ
16 1re 11213 . . . . . . . . . 10 1 ∈ ℝ
1712, 15, 16lttri 11339 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
1813, 14, 17mp2an 689 . . . . . . . 8 -1 < 1
1912, 18gtneii 11325 . . . . . . 7 1 ≠ -1
2019neii 2934 . . . . . 6 ¬ 1 = -1
2120pm2.21i 119 . . . . 5 (1 = -1 → 𝐴 < 0)
2221a1i 11 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = -1 → 𝐴 < 0))
23 simp2 1134 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0 ∧ -1 = -1) → 𝐴 < 0)
24233expia 1118 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = -1 → 𝐴 < 0))
251, 3, 5, 7, 11, 22, 24sgn3da 34060 . . 3 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 → 𝐴 < 0))
2625imp 406 . 2 ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = -1) → 𝐴 < 0)
27 sgnn 15043 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
2826, 27impbida 798 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098   class class class wbr 5139  cfv 6534  0cc0 11107  1c1 11108  *cxr 11246   < clt 11247  -cneg 11444  sgncsgn 15035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-sgn 15036
This theorem is referenced by:  sgnmulsgn  34068
  Copyright terms: Public domain W3C validator