Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnnbi | Structured version Visualization version GIF version |
Description: Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
Ref | Expression |
---|---|
sgnnbi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
2 | eqeq1 2740 | . . . . 5 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = -1 ↔ 0 = -1)) | |
3 | 2 | imbi1d 342 | . . . 4 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (0 = -1 → 𝐴 < 0))) |
4 | eqeq1 2740 | . . . . 5 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = -1 ↔ 1 = -1)) | |
5 | 4 | imbi1d 342 | . . . 4 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (1 = -1 → 𝐴 < 0))) |
6 | eqeq1 2740 | . . . . 5 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = -1 ↔ -1 = -1)) | |
7 | 6 | imbi1d 342 | . . . 4 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (-1 = -1 → 𝐴 < 0))) |
8 | neg1ne0 12135 | . . . . . . 7 ⊢ -1 ≠ 0 | |
9 | 8 | nesymi 2999 | . . . . . 6 ⊢ ¬ 0 = -1 |
10 | 9 | pm2.21i 119 | . . . . 5 ⊢ (0 = -1 → 𝐴 < 0) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = -1 → 𝐴 < 0)) |
12 | neg1rr 12134 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
13 | neg1lt0 12136 | . . . . . . . . 9 ⊢ -1 < 0 | |
14 | 0lt1 11543 | . . . . . . . . 9 ⊢ 0 < 1 | |
15 | 0re 11023 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
16 | 1re 11021 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
17 | 12, 15, 16 | lttri 11147 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
18 | 13, 14, 17 | mp2an 690 | . . . . . . . 8 ⊢ -1 < 1 |
19 | 12, 18 | gtneii 11133 | . . . . . . 7 ⊢ 1 ≠ -1 |
20 | 19 | neii 2943 | . . . . . 6 ⊢ ¬ 1 = -1 |
21 | 20 | pm2.21i 119 | . . . . 5 ⊢ (1 = -1 → 𝐴 < 0) |
22 | 21 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = -1 → 𝐴 < 0)) |
23 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0 ∧ -1 = -1) → 𝐴 < 0) | |
24 | 23 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = -1 → 𝐴 < 0)) |
25 | 1, 3, 5, 7, 11, 22, 24 | sgn3da 32553 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 → 𝐴 < 0)) |
26 | 25 | imp 408 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = -1) → 𝐴 < 0) |
27 | sgnn 14850 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (sgn‘𝐴) = -1) | |
28 | 26, 27 | impbida 799 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 0cc0 10917 1c1 10918 ℝ*cxr 11054 < clt 11055 -cneg 11252 sgncsgn 14842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-po 5514 df-so 5515 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-sgn 14843 |
This theorem is referenced by: sgnmulsgn 32561 |
Copyright terms: Public domain | W3C validator |