Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnnbi Structured version   Visualization version   GIF version

Theorem sgnnbi 31803
Description: Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnnbi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))

Proof of Theorem sgnnbi
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2825 . . . . 5 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = -1 ↔ 0 = -1))
32imbi1d 344 . . . 4 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (0 = -1 → 𝐴 < 0)))
4 eqeq1 2825 . . . . 5 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = -1 ↔ 1 = -1))
54imbi1d 344 . . . 4 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (1 = -1 → 𝐴 < 0)))
6 eqeq1 2825 . . . . 5 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = -1 ↔ -1 = -1))
76imbi1d 344 . . . 4 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (-1 = -1 → 𝐴 < 0)))
8 neg1ne0 11754 . . . . . . 7 -1 ≠ 0
98nesymi 3073 . . . . . 6 ¬ 0 = -1
109pm2.21i 119 . . . . 5 (0 = -1 → 𝐴 < 0)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = -1 → 𝐴 < 0))
12 neg1rr 11753 . . . . . . . 8 -1 ∈ ℝ
13 neg1lt0 11755 . . . . . . . . 9 -1 < 0
14 0lt1 11162 . . . . . . . . 9 0 < 1
15 0re 10643 . . . . . . . . . 10 0 ∈ ℝ
16 1re 10641 . . . . . . . . . 10 1 ∈ ℝ
1712, 15, 16lttri 10766 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
1813, 14, 17mp2an 690 . . . . . . . 8 -1 < 1
1912, 18gtneii 10752 . . . . . . 7 1 ≠ -1
2019neii 3018 . . . . . 6 ¬ 1 = -1
2120pm2.21i 119 . . . . 5 (1 = -1 → 𝐴 < 0)
2221a1i 11 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = -1 → 𝐴 < 0))
23 simp2 1133 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0 ∧ -1 = -1) → 𝐴 < 0)
24233expia 1117 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = -1 → 𝐴 < 0))
251, 3, 5, 7, 11, 22, 24sgn3da 31799 . . 3 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 → 𝐴 < 0))
2625imp 409 . 2 ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = -1) → 𝐴 < 0)
27 sgnn 14453 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
2826, 27impbida 799 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114   class class class wbr 5066  cfv 6355  0cc0 10537  1c1 10538  *cxr 10674   < clt 10675  -cneg 10871  sgncsgn 14445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-sgn 14446
This theorem is referenced by:  sgnmulsgn  31807
  Copyright terms: Public domain W3C validator