Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnnbi Structured version   Visualization version   GIF version

Theorem sgnnbi 32557
Description: Negative signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnnbi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))

Proof of Theorem sgnnbi
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2740 . . . . 5 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = -1 ↔ 0 = -1))
32imbi1d 342 . . . 4 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (0 = -1 → 𝐴 < 0)))
4 eqeq1 2740 . . . . 5 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = -1 ↔ 1 = -1))
54imbi1d 342 . . . 4 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (1 = -1 → 𝐴 < 0)))
6 eqeq1 2740 . . . . 5 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = -1 ↔ -1 = -1))
76imbi1d 342 . . . 4 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = -1 → 𝐴 < 0) ↔ (-1 = -1 → 𝐴 < 0)))
8 neg1ne0 12135 . . . . . . 7 -1 ≠ 0
98nesymi 2999 . . . . . 6 ¬ 0 = -1
109pm2.21i 119 . . . . 5 (0 = -1 → 𝐴 < 0)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = -1 → 𝐴 < 0))
12 neg1rr 12134 . . . . . . . 8 -1 ∈ ℝ
13 neg1lt0 12136 . . . . . . . . 9 -1 < 0
14 0lt1 11543 . . . . . . . . 9 0 < 1
15 0re 11023 . . . . . . . . . 10 0 ∈ ℝ
16 1re 11021 . . . . . . . . . 10 1 ∈ ℝ
1712, 15, 16lttri 11147 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
1813, 14, 17mp2an 690 . . . . . . . 8 -1 < 1
1912, 18gtneii 11133 . . . . . . 7 1 ≠ -1
2019neii 2943 . . . . . 6 ¬ 1 = -1
2120pm2.21i 119 . . . . 5 (1 = -1 → 𝐴 < 0)
2221a1i 11 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = -1 → 𝐴 < 0))
23 simp2 1137 . . . . 5 ((𝐴 ∈ ℝ*𝐴 < 0 ∧ -1 = -1) → 𝐴 < 0)
24233expia 1121 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = -1 → 𝐴 < 0))
251, 3, 5, 7, 11, 22, 24sgn3da 32553 . . 3 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 → 𝐴 < 0))
2625imp 408 . 2 ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = -1) → 𝐴 < 0)
27 sgnn 14850 . 2 ((𝐴 ∈ ℝ*𝐴 < 0) → (sgn‘𝐴) = -1)
2826, 27impbida 799 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = -1 ↔ 𝐴 < 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wcel 2104   class class class wbr 5081  cfv 6458  0cc0 10917  1c1 10918  *cxr 11054   < clt 11055  -cneg 11252  sgncsgn 14842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-po 5514  df-so 5515  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-sgn 14843
This theorem is referenced by:  sgnmulsgn  32561
  Copyright terms: Public domain W3C validator