![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnpbi | Structured version Visualization version GIF version |
Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
Ref | Expression |
---|---|
sgnpbi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
2 | eqeq1 2734 | . . . . 5 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 1 ↔ 0 = 1)) | |
3 | 2 | imbi1d 340 | . . . 4 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (0 = 1 → 0 < 𝐴))) |
4 | eqeq1 2734 | . . . . 5 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 1 ↔ 1 = 1)) | |
5 | 4 | imbi1d 340 | . . . 4 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (1 = 1 → 0 < 𝐴))) |
6 | eqeq1 2734 | . . . . 5 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 1 ↔ -1 = 1)) | |
7 | 6 | imbi1d 340 | . . . 4 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (-1 = 1 → 0 < 𝐴))) |
8 | 0ne1 12289 | . . . . . . 7 ⊢ 0 ≠ 1 | |
9 | 8 | neii 2940 | . . . . . 6 ⊢ ¬ 0 = 1 |
10 | 9 | pm2.21i 119 | . . . . 5 ⊢ (0 = 1 → 0 < 𝐴) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 1 → 0 < 𝐴)) |
12 | simp2 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1) → 0 < 𝐴) | |
13 | 12 | 3expia 1119 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 1 → 0 < 𝐴)) |
14 | neg1rr 12333 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
15 | neg1lt0 12335 | . . . . . . . . 9 ⊢ -1 < 0 | |
16 | 0lt1 11742 | . . . . . . . . 9 ⊢ 0 < 1 | |
17 | 0re 11222 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
18 | 1re 11220 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
19 | 14, 17, 18 | lttri 11346 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
20 | 15, 16, 19 | mp2an 688 | . . . . . . . 8 ⊢ -1 < 1 |
21 | 14, 20 | gtneii 11332 | . . . . . . 7 ⊢ 1 ≠ -1 |
22 | 21 | nesymi 2996 | . . . . . 6 ⊢ ¬ -1 = 1 |
23 | 22 | pm2.21i 119 | . . . . 5 ⊢ (-1 = 1 → 0 < 𝐴) |
24 | 23 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 1 → 0 < 𝐴)) |
25 | 1, 3, 5, 7, 11, 13, 24 | sgn3da 33836 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 → 0 < 𝐴)) |
26 | 25 | imp 405 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = 1) → 0 < 𝐴) |
27 | sgnp 15043 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
28 | 26, 27 | impbida 797 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 ∈ wcel 2104 class class class wbr 5149 ‘cfv 6544 0cc0 11114 1c1 11115 ℝ*cxr 11253 < clt 11254 -cneg 11451 sgncsgn 15039 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-sgn 15040 |
This theorem is referenced by: sgnmulsgp 33845 |
Copyright terms: Public domain | W3C validator |