![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnpbi | Structured version Visualization version GIF version |
Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
Ref | Expression |
---|---|
sgnpbi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
2 | eqeq1 2744 | . . . . 5 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 1 ↔ 0 = 1)) | |
3 | 2 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (0 = 1 → 0 < 𝐴))) |
4 | eqeq1 2744 | . . . . 5 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 1 ↔ 1 = 1)) | |
5 | 4 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (1 = 1 → 0 < 𝐴))) |
6 | eqeq1 2744 | . . . . 5 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 1 ↔ -1 = 1)) | |
7 | 6 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (-1 = 1 → 0 < 𝐴))) |
8 | 0ne1 12364 | . . . . . . 7 ⊢ 0 ≠ 1 | |
9 | 8 | neii 2948 | . . . . . 6 ⊢ ¬ 0 = 1 |
10 | 9 | pm2.21i 119 | . . . . 5 ⊢ (0 = 1 → 0 < 𝐴) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 1 → 0 < 𝐴)) |
12 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1) → 0 < 𝐴) | |
13 | 12 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 1 → 0 < 𝐴)) |
14 | neg1rr 12408 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
15 | neg1lt0 12410 | . . . . . . . . 9 ⊢ -1 < 0 | |
16 | 0lt1 11812 | . . . . . . . . 9 ⊢ 0 < 1 | |
17 | 0re 11292 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
18 | 1re 11290 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
19 | 14, 17, 18 | lttri 11416 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
20 | 15, 16, 19 | mp2an 691 | . . . . . . . 8 ⊢ -1 < 1 |
21 | 14, 20 | gtneii 11402 | . . . . . . 7 ⊢ 1 ≠ -1 |
22 | 21 | nesymi 3004 | . . . . . 6 ⊢ ¬ -1 = 1 |
23 | 22 | pm2.21i 119 | . . . . 5 ⊢ (-1 = 1 → 0 < 𝐴) |
24 | 23 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 1 → 0 < 𝐴)) |
25 | 1, 3, 5, 7, 11, 13, 24 | sgn3da 34506 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 → 0 < 𝐴)) |
26 | 25 | imp 406 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = 1) → 0 < 𝐴) |
27 | sgnp 15139 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
28 | 26, 27 | impbida 800 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 0cc0 11184 1c1 11185 ℝ*cxr 11323 < clt 11324 -cneg 11521 sgncsgn 15135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-sgn 15136 |
This theorem is referenced by: sgnmulsgp 34515 |
Copyright terms: Public domain | W3C validator |