Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnpbi Structured version   Visualization version   GIF version

Theorem sgnpbi 32737
Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnpbi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴))

Proof of Theorem sgnpbi
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2733 . . . . 5 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 1 ↔ 0 = 1))
32imbi1d 341 . . . 4 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (0 = 1 → 0 < 𝐴)))
4 eqeq1 2733 . . . . 5 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 1 ↔ 1 = 1))
54imbi1d 341 . . . 4 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (1 = 1 → 0 < 𝐴)))
6 eqeq1 2733 . . . . 5 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 1 ↔ -1 = 1))
76imbi1d 341 . . . 4 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (-1 = 1 → 0 < 𝐴)))
8 0ne1 12233 . . . . . . 7 0 ≠ 1
98neii 2927 . . . . . 6 ¬ 0 = 1
109pm2.21i 119 . . . . 5 (0 = 1 → 0 < 𝐴)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = 1 → 0 < 𝐴))
12 simp2 1137 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1) → 0 < 𝐴)
13123expia 1121 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 1 → 0 < 𝐴))
14 neg1rr 12148 . . . . . . . 8 -1 ∈ ℝ
15 neg1lt0 12150 . . . . . . . . 9 -1 < 0
16 0lt1 11676 . . . . . . . . 9 0 < 1
17 0re 11152 . . . . . . . . . 10 0 ∈ ℝ
18 1re 11150 . . . . . . . . . 10 1 ∈ ℝ
1914, 17, 18lttri 11276 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
2015, 16, 19mp2an 692 . . . . . . . 8 -1 < 1
2114, 20gtneii 11262 . . . . . . 7 1 ≠ -1
2221nesymi 2982 . . . . . 6 ¬ -1 = 1
2322pm2.21i 119 . . . . 5 (-1 = 1 → 0 < 𝐴)
2423a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = 1 → 0 < 𝐴))
251, 3, 5, 7, 11, 13, 24sgn3da 32732 . . 3 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 → 0 < 𝐴))
2625imp 406 . 2 ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = 1) → 0 < 𝐴)
27 sgnp 15032 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
2826, 27impbida 800 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5102  cfv 6499  0cc0 11044  1c1 11045  *cxr 11183   < clt 11184  -cneg 11382  sgncsgn 15028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-sgn 15029
This theorem is referenced by:  sgnmulsgp  32741
  Copyright terms: Public domain W3C validator