Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnpbi | Structured version Visualization version GIF version |
Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
Ref | Expression |
---|---|
sgnpbi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
2 | eqeq1 2742 | . . . . 5 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 1 ↔ 0 = 1)) | |
3 | 2 | imbi1d 342 | . . . 4 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (0 = 1 → 0 < 𝐴))) |
4 | eqeq1 2742 | . . . . 5 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 1 ↔ 1 = 1)) | |
5 | 4 | imbi1d 342 | . . . 4 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (1 = 1 → 0 < 𝐴))) |
6 | eqeq1 2742 | . . . . 5 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 1 ↔ -1 = 1)) | |
7 | 6 | imbi1d 342 | . . . 4 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (-1 = 1 → 0 < 𝐴))) |
8 | 0ne1 12044 | . . . . . . 7 ⊢ 0 ≠ 1 | |
9 | 8 | neii 2945 | . . . . . 6 ⊢ ¬ 0 = 1 |
10 | 9 | pm2.21i 119 | . . . . 5 ⊢ (0 = 1 → 0 < 𝐴) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 1 → 0 < 𝐴)) |
12 | simp2 1136 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1) → 0 < 𝐴) | |
13 | 12 | 3expia 1120 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 1 → 0 < 𝐴)) |
14 | neg1rr 12088 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
15 | neg1lt0 12090 | . . . . . . . . 9 ⊢ -1 < 0 | |
16 | 0lt1 11497 | . . . . . . . . 9 ⊢ 0 < 1 | |
17 | 0re 10977 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
18 | 1re 10975 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
19 | 14, 17, 18 | lttri 11101 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
20 | 15, 16, 19 | mp2an 689 | . . . . . . . 8 ⊢ -1 < 1 |
21 | 14, 20 | gtneii 11087 | . . . . . . 7 ⊢ 1 ≠ -1 |
22 | 21 | nesymi 3001 | . . . . . 6 ⊢ ¬ -1 = 1 |
23 | 22 | pm2.21i 119 | . . . . 5 ⊢ (-1 = 1 → 0 < 𝐴) |
24 | 23 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 1 → 0 < 𝐴)) |
25 | 1, 3, 5, 7, 11, 13, 24 | sgn3da 32508 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 → 0 < 𝐴)) |
26 | 25 | imp 407 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = 1) → 0 < 𝐴) |
27 | sgnp 14801 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
28 | 26, 27 | impbida 798 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 0cc0 10871 1c1 10872 ℝ*cxr 11008 < clt 11009 -cneg 11206 sgncsgn 14797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-sgn 14798 |
This theorem is referenced by: sgnmulsgp 32517 |
Copyright terms: Public domain | W3C validator |