Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sgnpbi Structured version   Visualization version   GIF version

Theorem sgnpbi 32784
Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.)
Assertion
Ref Expression
sgnpbi (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴))

Proof of Theorem sgnpbi
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ∈ ℝ*𝐴 ∈ ℝ*)
2 eqeq1 2733 . . . . 5 ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 1 ↔ 0 = 1))
32imbi1d 341 . . . 4 ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (0 = 1 → 0 < 𝐴)))
4 eqeq1 2733 . . . . 5 ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 1 ↔ 1 = 1))
54imbi1d 341 . . . 4 ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (1 = 1 → 0 < 𝐴)))
6 eqeq1 2733 . . . . 5 ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 1 ↔ -1 = 1))
76imbi1d 341 . . . 4 ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (-1 = 1 → 0 < 𝐴)))
8 0ne1 12199 . . . . . . 7 0 ≠ 1
98neii 2927 . . . . . 6 ¬ 0 = 1
109pm2.21i 119 . . . . 5 (0 = 1 → 0 < 𝐴)
1110a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 = 0) → (0 = 1 → 0 < 𝐴))
12 simp2 1137 . . . . 5 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1) → 0 < 𝐴)
13123expia 1121 . . . 4 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 1 → 0 < 𝐴))
14 neg1rr 12114 . . . . . . . 8 -1 ∈ ℝ
15 neg1lt0 12116 . . . . . . . . 9 -1 < 0
16 0lt1 11642 . . . . . . . . 9 0 < 1
17 0re 11117 . . . . . . . . . 10 0 ∈ ℝ
18 1re 11115 . . . . . . . . . 10 1 ∈ ℝ
1914, 17, 18lttri 11242 . . . . . . . . 9 ((-1 < 0 ∧ 0 < 1) → -1 < 1)
2015, 16, 19mp2an 692 . . . . . . . 8 -1 < 1
2114, 20gtneii 11228 . . . . . . 7 1 ≠ -1
2221nesymi 2982 . . . . . 6 ¬ -1 = 1
2322pm2.21i 119 . . . . 5 (-1 = 1 → 0 < 𝐴)
2423a1i 11 . . . 4 ((𝐴 ∈ ℝ*𝐴 < 0) → (-1 = 1 → 0 < 𝐴))
251, 3, 5, 7, 11, 13, 24sgn3da 32779 . . 3 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 → 0 < 𝐴))
2625imp 406 . 2 ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = 1) → 0 < 𝐴)
27 sgnp 14997 . 2 ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1)
2826, 27impbida 800 1 (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  0cc0 11009  1c1 11010  *cxr 11148   < clt 11149  -cneg 11348  sgncsgn 14993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-sgn 14994
This theorem is referenced by:  sgnmulsgp  32788
  Copyright terms: Public domain W3C validator