Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnpbi | Structured version Visualization version GIF version |
Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
Ref | Expression |
---|---|
sgnpbi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
2 | eqeq1 2742 | . . . . 5 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 1 ↔ 0 = 1)) | |
3 | 2 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (0 = 1 → 0 < 𝐴))) |
4 | eqeq1 2742 | . . . . 5 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 1 ↔ 1 = 1)) | |
5 | 4 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (1 = 1 → 0 < 𝐴))) |
6 | eqeq1 2742 | . . . . 5 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 1 ↔ -1 = 1)) | |
7 | 6 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (-1 = 1 → 0 < 𝐴))) |
8 | 0ne1 11974 | . . . . . . 7 ⊢ 0 ≠ 1 | |
9 | 8 | neii 2944 | . . . . . 6 ⊢ ¬ 0 = 1 |
10 | 9 | pm2.21i 119 | . . . . 5 ⊢ (0 = 1 → 0 < 𝐴) |
11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 1 → 0 < 𝐴)) |
12 | simp2 1135 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1) → 0 < 𝐴) | |
13 | 12 | 3expia 1119 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 1 → 0 < 𝐴)) |
14 | neg1rr 12018 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
15 | neg1lt0 12020 | . . . . . . . . 9 ⊢ -1 < 0 | |
16 | 0lt1 11427 | . . . . . . . . 9 ⊢ 0 < 1 | |
17 | 0re 10908 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
18 | 1re 10906 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
19 | 14, 17, 18 | lttri 11031 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
20 | 15, 16, 19 | mp2an 688 | . . . . . . . 8 ⊢ -1 < 1 |
21 | 14, 20 | gtneii 11017 | . . . . . . 7 ⊢ 1 ≠ -1 |
22 | 21 | nesymi 3000 | . . . . . 6 ⊢ ¬ -1 = 1 |
23 | 22 | pm2.21i 119 | . . . . 5 ⊢ (-1 = 1 → 0 < 𝐴) |
24 | 23 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 1 → 0 < 𝐴)) |
25 | 1, 3, 5, 7, 11, 13, 24 | sgn3da 32408 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 → 0 < 𝐴)) |
26 | 25 | imp 406 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = 1) → 0 < 𝐴) |
27 | sgnp 14729 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
28 | 26, 27 | impbida 797 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 0cc0 10802 1c1 10803 ℝ*cxr 10939 < clt 10940 -cneg 11136 sgncsgn 14725 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-sgn 14726 |
This theorem is referenced by: sgnmulsgp 32417 |
Copyright terms: Public domain | W3C validator |