| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sgnpbi | Structured version Visualization version GIF version | ||
| Description: Positive signum. (Contributed by Thierry Arnoux, 2-Oct-2018.) |
| Ref | Expression |
|---|---|
| sgnpbi | ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . 4 ⊢ (𝐴 ∈ ℝ* → 𝐴 ∈ ℝ*) | |
| 2 | eqeq1 2735 | . . . . 5 ⊢ ((sgn‘𝐴) = 0 → ((sgn‘𝐴) = 1 ↔ 0 = 1)) | |
| 3 | 2 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = 0 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (0 = 1 → 0 < 𝐴))) |
| 4 | eqeq1 2735 | . . . . 5 ⊢ ((sgn‘𝐴) = 1 → ((sgn‘𝐴) = 1 ↔ 1 = 1)) | |
| 5 | 4 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = 1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (1 = 1 → 0 < 𝐴))) |
| 6 | eqeq1 2735 | . . . . 5 ⊢ ((sgn‘𝐴) = -1 → ((sgn‘𝐴) = 1 ↔ -1 = 1)) | |
| 7 | 6 | imbi1d 341 | . . . 4 ⊢ ((sgn‘𝐴) = -1 → (((sgn‘𝐴) = 1 → 0 < 𝐴) ↔ (-1 = 1 → 0 < 𝐴))) |
| 8 | 0ne1 12196 | . . . . . . 7 ⊢ 0 ≠ 1 | |
| 9 | 8 | neii 2930 | . . . . . 6 ⊢ ¬ 0 = 1 |
| 10 | 9 | pm2.21i 119 | . . . . 5 ⊢ (0 = 1 → 0 < 𝐴) |
| 11 | 10 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 = 0) → (0 = 1 → 0 < 𝐴)) |
| 12 | simp2 1137 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴 ∧ 1 = 1) → 0 < 𝐴) | |
| 13 | 12 | 3expia 1121 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (1 = 1 → 0 < 𝐴)) |
| 14 | neg1rr 12111 | . . . . . . . 8 ⊢ -1 ∈ ℝ | |
| 15 | neg1lt0 12113 | . . . . . . . . 9 ⊢ -1 < 0 | |
| 16 | 0lt1 11639 | . . . . . . . . 9 ⊢ 0 < 1 | |
| 17 | 0re 11114 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
| 18 | 1re 11112 | . . . . . . . . . 10 ⊢ 1 ∈ ℝ | |
| 19 | 14, 17, 18 | lttri 11239 | . . . . . . . . 9 ⊢ ((-1 < 0 ∧ 0 < 1) → -1 < 1) |
| 20 | 15, 16, 19 | mp2an 692 | . . . . . . . 8 ⊢ -1 < 1 |
| 21 | 14, 20 | gtneii 11225 | . . . . . . 7 ⊢ 1 ≠ -1 |
| 22 | 21 | nesymi 2985 | . . . . . 6 ⊢ ¬ -1 = 1 |
| 23 | 22 | pm2.21i 119 | . . . . 5 ⊢ (-1 = 1 → 0 < 𝐴) |
| 24 | 23 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐴 < 0) → (-1 = 1 → 0 < 𝐴)) |
| 25 | 1, 3, 5, 7, 11, 13, 24 | sgn3da 32817 | . . 3 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 → 0 < 𝐴)) |
| 26 | 25 | imp 406 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (sgn‘𝐴) = 1) → 0 < 𝐴) |
| 27 | sgnp 14997 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 0 < 𝐴) → (sgn‘𝐴) = 1) | |
| 28 | 26, 27 | impbida 800 | 1 ⊢ (𝐴 ∈ ℝ* → ((sgn‘𝐴) = 1 ↔ 0 < 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 0cc0 11006 1c1 11007 ℝ*cxr 11145 < clt 11146 -cneg 11345 sgncsgn 14993 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-sgn 14994 |
| This theorem is referenced by: sgnmulsgp 32826 |
| Copyright terms: Public domain | W3C validator |