MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Structured version   Visualization version   GIF version

Theorem mbfsup 25587
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, 𝐵(𝑛, 𝑥) is a function of both 𝑛 and 𝑥, since it is an 𝑛-indexed sequence of functions on 𝑥. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1 𝑍 = (ℤ𝑀)
mbfsup.2 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
mbfsup.3 (𝜑𝑀 ∈ ℤ)
mbfsup.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfsup.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfsup.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
Assertion
Ref Expression
mbfsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑦,𝐵   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfsup
Dummy variables 𝑚 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
21anassrs 467 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32an32s 652 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 7043 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6654 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfsup.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 uzid 12742 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleqtrrdi 2842 . . . . . . . 8 (𝜑𝑀𝑍)
1110adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2731 . . . . . . . 8 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6621 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2834 . . . . . 6 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4287 . . . . 5 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5859 . . . . . 6 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 2980 . . . . 5 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 218 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfsup.6 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
204ffnd 6647 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq1 5089 . . . . . . . . 9 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑧𝑦 ↔ ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2221ralrn 7016 . . . . . . . 8 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2320, 22syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
24 nffvmpt1 6828 . . . . . . . . . 10 𝑛((𝑛𝑍𝐵)‘𝑚)
25 nfcv 2894 . . . . . . . . . 10 𝑛
26 nfcv 2894 . . . . . . . . . 10 𝑛𝑦
2724, 25, 26nfbr 5133 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦
28 nfv 1915 . . . . . . . . 9 𝑚((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦
29 fveq2 6817 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq1d 5096 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦))
3127, 28, 30cbvralw 3274 . . . . . . . 8 (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦)
32 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6935 . . . . . . . . . . 11 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq1d 5096 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦𝐵𝑦))
3635ralbidva 3153 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3731, 36bitrid 283 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3823, 37bitrd 279 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3938rexbidv 3156 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦))
4019, 39mpbird 257 . . . 4 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦)
415, 18, 40suprcld 12080 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ ℝ)
42 mbfsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
4341, 42fmptd 7042 . 2 (𝜑𝐺:𝐴⟶ℝ)
44 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝐴)
45 ltso 11188 . . . . . . . . . . . . . 14 < Or ℝ
4645supex 9343 . . . . . . . . . . . . 13 sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V
4742fvmpt2 6935 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4844, 46, 47sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4948breq2d 5098 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ 𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < )))
505, 18, 403jca 1128 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
5150adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
52 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑡 ∈ ℝ)
53 suprlub 12081 . . . . . . . . . . . 12 (((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦) ∧ 𝑡 ∈ ℝ) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5451, 52, 53syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5520adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
56 breq2 5090 . . . . . . . . . . . . . 14 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑡 < 𝑧𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5756rexrn 7015 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵) Fn 𝑍 → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5855, 57syl 17 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
59 nfcv 2894 . . . . . . . . . . . . . . 15 𝑛𝑡
60 nfcv 2894 . . . . . . . . . . . . . . 15 𝑛 <
6159, 60, 24nfbr 5133 . . . . . . . . . . . . . 14 𝑛 𝑡 < ((𝑛𝑍𝐵)‘𝑚)
62 nfv 1915 . . . . . . . . . . . . . 14 𝑚 𝑡 < ((𝑛𝑍𝐵)‘𝑛)
6329breq2d 5098 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑡 < ((𝑛𝑍𝐵)‘𝑛)))
6461, 62, 63cbvrexw 3275 . . . . . . . . . . . . 13 (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛))
6512fvmpt2i 6934 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → ((𝑛𝑍𝐵)‘𝑛) = ( I ‘𝐵))
66 eqid 2731 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
6766fvmpt2i 6934 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6867adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6968eqcomd 2737 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → ( I ‘𝐵) = ((𝑥𝐴𝐵)‘𝑥))
7065, 69sylan9eqr 2788 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = ((𝑥𝐴𝐵)‘𝑥))
7170breq2d 5098 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7271rexbidva 3154 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7372adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7464, 73bitrid 283 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7558, 74bitrd 279 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7649, 54, 753bitrd 305 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7776ralrimiva 3124 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
78 nfv 1915 . . . . . . . . . 10 𝑧(𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥))
79 nfcv 2894 . . . . . . . . . . . 12 𝑥𝑡
80 nfcv 2894 . . . . . . . . . . . 12 𝑥 <
81 nfmpt1 5185 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
8242, 81nfcxfr 2892 . . . . . . . . . . . . 13 𝑥𝐺
83 nfcv 2894 . . . . . . . . . . . . 13 𝑥𝑧
8482, 83nffv 6827 . . . . . . . . . . . 12 𝑥(𝐺𝑧)
8579, 80, 84nfbr 5133 . . . . . . . . . . 11 𝑥 𝑡 < (𝐺𝑧)
86 nfcv 2894 . . . . . . . . . . . 12 𝑥𝑍
87 nffvmpt1 6828 . . . . . . . . . . . . 13 𝑥((𝑥𝐴𝐵)‘𝑧)
8879, 80, 87nfbr 5133 . . . . . . . . . . . 12 𝑥 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
8986, 88nfrexw 3280 . . . . . . . . . . 11 𝑥𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
9085, 89nfbi 1904 . . . . . . . . . 10 𝑥(𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))
91 fveq2 6817 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
9291breq2d 5098 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑡 < (𝐺𝑥) ↔ 𝑡 < (𝐺𝑧)))
93 fveq2 6817 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
9493breq2d 5098 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9594rexbidv 3156 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9692, 95bibi12d 345 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
9778, 90, 96cbvralw 3274 . . . . . . . . 9 (∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9877, 97sylib 218 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9998r19.21bi 3224 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
10043adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
101100ffvelcdmda 7012 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
102 rexr 11153 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℝ*)
103102ad2antlr 727 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → 𝑡 ∈ ℝ*)
104 elioopnf 13338 . . . . . . . . 9 (𝑡 ∈ ℝ* → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
105103, 104syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
106101, 105mpbirand 707 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < (𝐺𝑧)))
107103adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → 𝑡 ∈ ℝ*)
108 elioopnf 13338 . . . . . . . . . 10 (𝑡 ∈ ℝ* → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
109107, 108syl 17 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
1102fmpttd 7043 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵):𝐴⟶ℝ)
111110ffvelcdmda 7012 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℝ)
112111biantrurd 532 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
113112an32s 652 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
114113adantllr 719 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
115109, 114bitr4d 282 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
116115rexbidva 3154 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
11799, 106, 1163bitr4d 311 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
118117pm5.32da 579 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ((𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
11943ffnd 6647 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
120119adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐺 Fn 𝐴)
121 elpreima 6986 . . . . . 6 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
122120, 121syl 17 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
123 eliun 4940 . . . . . 6 (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
124110ffnd 6647 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) Fn 𝐴)
125 elpreima 6986 . . . . . . . . . 10 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
126124, 125syl 17 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
127126rexbidva 3154 . . . . . . . 8 (𝜑 → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
128127adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
129 r19.42v 3164 . . . . . . 7 (∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
130128, 129bitrdi 287 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
131123, 130bitrid 283 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
132118, 122, 1313bitr4d 311 . . . 4 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ 𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞))))
133132eqrdv 2729 . . 3 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) = 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
134 zex 12472 . . . . . . 7 ℤ ∈ V
135 uzssz 12748 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
136 ssdomg 8917 . . . . . . 7 (ℤ ∈ V → ((ℤ𝑀) ⊆ ℤ → (ℤ𝑀) ≼ ℤ))
137134, 135, 136mp2 9 . . . . . 6 (ℤ𝑀) ≼ ℤ
1389, 137eqbrtri 5107 . . . . 5 𝑍 ≼ ℤ
139 znnen 16116 . . . . 5 ℤ ≈ ℕ
140 domentr 8930 . . . . 5 ((𝑍 ≼ ℤ ∧ ℤ ≈ ℕ) → 𝑍 ≼ ℕ)
141138, 139, 140mp2an 692 . . . 4 𝑍 ≼ ℕ
142 mbfsup.4 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
143 mbfima 25553 . . . . . . 7 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑥𝐴𝐵):𝐴⟶ℝ) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
144142, 110, 143syl2anc 584 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
145144ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
146145adantr 480 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
147 iunmbl2 25480 . . . 4 ((𝑍 ≼ ℕ ∧ ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
148141, 146, 147sylancr 587 . . 3 ((𝜑𝑡 ∈ ℝ) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
149133, 148eqeltrd 2831 . 2 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) ∈ dom vol)
15043, 149ismbf3d 25577 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897  c0 4278   ciun 4936   class class class wbr 5086  cmpt 5167   I cid 5505  ccnv 5610  dom cdm 5611  ran crn 5612  cima 5614   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  cen 8861  cdom 8862  supcsup 9319  cr 11000  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  cn 12120  cz 12463  cuz 12727  (,)cioo 13240  volcvol 25386  MblFncmbf 25537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cc 10321  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-disj 5054  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-dju 9789  df-card 9827  df-acn 9830  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-q 12842  df-rp 12886  df-xadd 13007  df-ioo 13244  df-ioc 13245  df-ico 13246  df-icc 13247  df-fz 13403  df-fzo 13550  df-fl 13691  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-rlim 15391  df-sum 15589  df-xmet 21279  df-met 21280  df-ovol 25387  df-vol 25388  df-mbf 25542
This theorem is referenced by:  mbfinf  25588  mbflimsup  25589
  Copyright terms: Public domain W3C validator