MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Structured version   Visualization version   GIF version

Theorem mbfsup 24259
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, 𝐵(𝑛, 𝑥) is a function of both 𝑛 and 𝑥, since it is an 𝑛-indexed sequence of functions on 𝑥. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1 𝑍 = (ℤ𝑀)
mbfsup.2 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
mbfsup.3 (𝜑𝑀 ∈ ℤ)
mbfsup.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfsup.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfsup.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
Assertion
Ref Expression
mbfsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑦,𝐵   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfsup
Dummy variables 𝑚 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
21anassrs 470 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32an32s 650 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 6873 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6515 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfsup.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 uzid 12252 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleqtrrdi 2924 . . . . . . . 8 (𝜑𝑀𝑍)
1110adantr 483 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2821 . . . . . . . 8 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6487 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2916 . . . . . 6 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4300 . . . . 5 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5789 . . . . . 6 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 3068 . . . . 5 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 220 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfsup.6 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
204ffnd 6509 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq1 5061 . . . . . . . . 9 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑧𝑦 ↔ ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2221ralrn 6848 . . . . . . . 8 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2320, 22syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
24 nffvmpt1 6675 . . . . . . . . . 10 𝑛((𝑛𝑍𝐵)‘𝑚)
25 nfcv 2977 . . . . . . . . . 10 𝑛
26 nfcv 2977 . . . . . . . . . 10 𝑛𝑦
2724, 25, 26nfbr 5105 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦
28 nfv 1911 . . . . . . . . 9 𝑚((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦
29 fveq2 6664 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq1d 5068 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦))
3127, 28, 30cbvralw 3441 . . . . . . . 8 (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦)
32 simpr 487 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6773 . . . . . . . . . . 11 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 586 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq1d 5068 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦𝐵𝑦))
3635ralbidva 3196 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3731, 36syl5bb 285 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3823, 37bitrd 281 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3938rexbidv 3297 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦))
4019, 39mpbird 259 . . . 4 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦)
415, 18, 40suprcld 11598 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ ℝ)
42 mbfsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
4341, 42fmptd 6872 . 2 (𝜑𝐺:𝐴⟶ℝ)
44 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝐴)
45 ltso 10715 . . . . . . . . . . . . . 14 < Or ℝ
4645supex 8921 . . . . . . . . . . . . 13 sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V
4742fvmpt2 6773 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4844, 46, 47sylancl 588 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4948breq2d 5070 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ 𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < )))
505, 18, 403jca 1124 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
5150adantlr 713 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
52 simplr 767 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑡 ∈ ℝ)
53 suprlub 11599 . . . . . . . . . . . 12 (((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦) ∧ 𝑡 ∈ ℝ) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5451, 52, 53syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5520adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
56 breq2 5062 . . . . . . . . . . . . . 14 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑡 < 𝑧𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5756rexrn 6847 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵) Fn 𝑍 → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5855, 57syl 17 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
59 nfcv 2977 . . . . . . . . . . . . . . 15 𝑛𝑡
60 nfcv 2977 . . . . . . . . . . . . . . 15 𝑛 <
6159, 60, 24nfbr 5105 . . . . . . . . . . . . . 14 𝑛 𝑡 < ((𝑛𝑍𝐵)‘𝑚)
62 nfv 1911 . . . . . . . . . . . . . 14 𝑚 𝑡 < ((𝑛𝑍𝐵)‘𝑛)
6329breq2d 5070 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑡 < ((𝑛𝑍𝐵)‘𝑛)))
6461, 62, 63cbvrexw 3442 . . . . . . . . . . . . 13 (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛))
6512fvmpt2i 6772 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → ((𝑛𝑍𝐵)‘𝑛) = ( I ‘𝐵))
66 eqid 2821 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
6766fvmpt2i 6772 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6867adantl 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6968eqcomd 2827 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → ( I ‘𝐵) = ((𝑥𝐴𝐵)‘𝑥))
7065, 69sylan9eqr 2878 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = ((𝑥𝐴𝐵)‘𝑥))
7170breq2d 5070 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7271rexbidva 3296 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7372adantlr 713 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7464, 73syl5bb 285 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7558, 74bitrd 281 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7649, 54, 753bitrd 307 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7776ralrimiva 3182 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
78 nfv 1911 . . . . . . . . . 10 𝑧(𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥))
79 nfcv 2977 . . . . . . . . . . . 12 𝑥𝑡
80 nfcv 2977 . . . . . . . . . . . 12 𝑥 <
81 nfmpt1 5156 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
8242, 81nfcxfr 2975 . . . . . . . . . . . . 13 𝑥𝐺
83 nfcv 2977 . . . . . . . . . . . . 13 𝑥𝑧
8482, 83nffv 6674 . . . . . . . . . . . 12 𝑥(𝐺𝑧)
8579, 80, 84nfbr 5105 . . . . . . . . . . 11 𝑥 𝑡 < (𝐺𝑧)
86 nfcv 2977 . . . . . . . . . . . 12 𝑥𝑍
87 nffvmpt1 6675 . . . . . . . . . . . . 13 𝑥((𝑥𝐴𝐵)‘𝑧)
8879, 80, 87nfbr 5105 . . . . . . . . . . . 12 𝑥 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
8986, 88nfrex 3309 . . . . . . . . . . 11 𝑥𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
9085, 89nfbi 1900 . . . . . . . . . 10 𝑥(𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))
91 fveq2 6664 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
9291breq2d 5070 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑡 < (𝐺𝑥) ↔ 𝑡 < (𝐺𝑧)))
93 fveq2 6664 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
9493breq2d 5070 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9594rexbidv 3297 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9692, 95bibi12d 348 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
9778, 90, 96cbvralw 3441 . . . . . . . . 9 (∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9877, 97sylib 220 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9998r19.21bi 3208 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
10043adantr 483 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
101100ffvelrnda 6845 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
102 rexr 10681 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℝ*)
103102ad2antlr 725 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → 𝑡 ∈ ℝ*)
104 elioopnf 12825 . . . . . . . . 9 (𝑡 ∈ ℝ* → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
105103, 104syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
106101, 105mpbirand 705 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < (𝐺𝑧)))
107103adantr 483 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → 𝑡 ∈ ℝ*)
108 elioopnf 12825 . . . . . . . . . 10 (𝑡 ∈ ℝ* → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
109107, 108syl 17 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
1102fmpttd 6873 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵):𝐴⟶ℝ)
111110ffvelrnda 6845 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℝ)
112111biantrurd 535 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
113112an32s 650 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
114113adantllr 717 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
115109, 114bitr4d 284 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
116115rexbidva 3296 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
11799, 106, 1163bitr4d 313 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
118117pm5.32da 581 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ((𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
11943ffnd 6509 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
120119adantr 483 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐺 Fn 𝐴)
121 elpreima 6822 . . . . . 6 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
122120, 121syl 17 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
123 eliun 4915 . . . . . 6 (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
124110ffnd 6509 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) Fn 𝐴)
125 elpreima 6822 . . . . . . . . . 10 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
126124, 125syl 17 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
127126rexbidva 3296 . . . . . . . 8 (𝜑 → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
128127adantr 483 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
129 r19.42v 3350 . . . . . . 7 (∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
130128, 129syl6bb 289 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
131123, 130syl5bb 285 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
132118, 122, 1313bitr4d 313 . . . 4 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ 𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞))))
133132eqrdv 2819 . . 3 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) = 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
134 zex 11984 . . . . . . 7 ℤ ∈ V
135 uzssz 12258 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
136 ssdomg 8549 . . . . . . 7 (ℤ ∈ V → ((ℤ𝑀) ⊆ ℤ → (ℤ𝑀) ≼ ℤ))
137134, 135, 136mp2 9 . . . . . 6 (ℤ𝑀) ≼ ℤ
1389, 137eqbrtri 5079 . . . . 5 𝑍 ≼ ℤ
139 znnen 15559 . . . . 5 ℤ ≈ ℕ
140 domentr 8562 . . . . 5 ((𝑍 ≼ ℤ ∧ ℤ ≈ ℕ) → 𝑍 ≼ ℕ)
141138, 139, 140mp2an 690 . . . 4 𝑍 ≼ ℕ
142 mbfsup.4 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
143 mbfima 24225 . . . . . . 7 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑥𝐴𝐵):𝐴⟶ℝ) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
144142, 110, 143syl2anc 586 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
145144ralrimiva 3182 . . . . 5 (𝜑 → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
146145adantr 483 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
147 iunmbl2 24152 . . . 4 ((𝑍 ≼ ℕ ∧ ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
148141, 146, 147sylancr 589 . . 3 ((𝜑𝑡 ∈ ℝ) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
149133, 148eqeltrd 2913 . 2 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) ∈ dom vol)
15043, 149ismbf3d 24249 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  Vcvv 3494  wss 3935  c0 4290   ciun 4911   class class class wbr 5058  cmpt 5138   I cid 5453  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150  cen 8500  cdom 8501  supcsup 8898  cr 10530  +∞cpnf 10666  *cxr 10668   < clt 10669  cle 10670  cn 11632  cz 11975  cuz 12237  (,)cioo 12732  volcvol 24058  MblFncmbf 24209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cc 9851  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-disj 5024  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-omul 8101  df-er 8283  df-map 8402  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-dju 9324  df-card 9362  df-acn 9365  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-xadd 12502  df-ioo 12736  df-ioc 12737  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-rlim 14840  df-sum 15037  df-xmet 20532  df-met 20533  df-ovol 24059  df-vol 24060  df-mbf 24214
This theorem is referenced by:  mbfinf  24260  mbflimsup  24261
  Copyright terms: Public domain W3C validator