MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Structured version   Visualization version   GIF version

Theorem mbfsup 24268
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, 𝐵(𝑛, 𝑥) is a function of both 𝑛 and 𝑥, since it is an 𝑛-indexed sequence of functions on 𝑥. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1 𝑍 = (ℤ𝑀)
mbfsup.2 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
mbfsup.3 (𝜑𝑀 ∈ ℤ)
mbfsup.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfsup.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfsup.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
Assertion
Ref Expression
mbfsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑦,𝐵   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfsup
Dummy variables 𝑚 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
21anassrs 471 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32an32s 651 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 6856 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6494 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfsup.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 uzid 12246 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleqtrrdi 2901 . . . . . . . 8 (𝜑𝑀𝑍)
1110adantr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2798 . . . . . . . 8 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6465 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2893 . . . . . 6 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4251 . . . . 5 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5759 . . . . . 6 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 3039 . . . . 5 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 221 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfsup.6 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
204ffnd 6488 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq1 5033 . . . . . . . . 9 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑧𝑦 ↔ ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2221ralrn 6831 . . . . . . . 8 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2320, 22syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
24 nffvmpt1 6656 . . . . . . . . . 10 𝑛((𝑛𝑍𝐵)‘𝑚)
25 nfcv 2955 . . . . . . . . . 10 𝑛
26 nfcv 2955 . . . . . . . . . 10 𝑛𝑦
2724, 25, 26nfbr 5077 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦
28 nfv 1915 . . . . . . . . 9 𝑚((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦
29 fveq2 6645 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq1d 5040 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦))
3127, 28, 30cbvralw 3387 . . . . . . . 8 (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦)
32 simpr 488 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6756 . . . . . . . . . . 11 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 587 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq1d 5040 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦𝐵𝑦))
3635ralbidva 3161 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3731, 36syl5bb 286 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3823, 37bitrd 282 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3938rexbidv 3256 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦))
4019, 39mpbird 260 . . . 4 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦)
415, 18, 40suprcld 11591 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ ℝ)
42 mbfsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
4341, 42fmptd 6855 . 2 (𝜑𝐺:𝐴⟶ℝ)
44 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝐴)
45 ltso 10710 . . . . . . . . . . . . . 14 < Or ℝ
4645supex 8911 . . . . . . . . . . . . 13 sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V
4742fvmpt2 6756 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4844, 46, 47sylancl 589 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4948breq2d 5042 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ 𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < )))
505, 18, 403jca 1125 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
5150adantlr 714 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
52 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑡 ∈ ℝ)
53 suprlub 11592 . . . . . . . . . . . 12 (((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦) ∧ 𝑡 ∈ ℝ) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5451, 52, 53syl2anc 587 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5520adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
56 breq2 5034 . . . . . . . . . . . . . 14 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑡 < 𝑧𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5756rexrn 6830 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵) Fn 𝑍 → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5855, 57syl 17 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
59 nfcv 2955 . . . . . . . . . . . . . . 15 𝑛𝑡
60 nfcv 2955 . . . . . . . . . . . . . . 15 𝑛 <
6159, 60, 24nfbr 5077 . . . . . . . . . . . . . 14 𝑛 𝑡 < ((𝑛𝑍𝐵)‘𝑚)
62 nfv 1915 . . . . . . . . . . . . . 14 𝑚 𝑡 < ((𝑛𝑍𝐵)‘𝑛)
6329breq2d 5042 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑡 < ((𝑛𝑍𝐵)‘𝑛)))
6461, 62, 63cbvrexw 3388 . . . . . . . . . . . . 13 (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛))
6512fvmpt2i 6755 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → ((𝑛𝑍𝐵)‘𝑛) = ( I ‘𝐵))
66 eqid 2798 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
6766fvmpt2i 6755 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6867adantl 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6968eqcomd 2804 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → ( I ‘𝐵) = ((𝑥𝐴𝐵)‘𝑥))
7065, 69sylan9eqr 2855 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = ((𝑥𝐴𝐵)‘𝑥))
7170breq2d 5042 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7271rexbidva 3255 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7372adantlr 714 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7464, 73syl5bb 286 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7558, 74bitrd 282 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7649, 54, 753bitrd 308 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7776ralrimiva 3149 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
78 nfv 1915 . . . . . . . . . 10 𝑧(𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥))
79 nfcv 2955 . . . . . . . . . . . 12 𝑥𝑡
80 nfcv 2955 . . . . . . . . . . . 12 𝑥 <
81 nfmpt1 5128 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
8242, 81nfcxfr 2953 . . . . . . . . . . . . 13 𝑥𝐺
83 nfcv 2955 . . . . . . . . . . . . 13 𝑥𝑧
8482, 83nffv 6655 . . . . . . . . . . . 12 𝑥(𝐺𝑧)
8579, 80, 84nfbr 5077 . . . . . . . . . . 11 𝑥 𝑡 < (𝐺𝑧)
86 nfcv 2955 . . . . . . . . . . . 12 𝑥𝑍
87 nffvmpt1 6656 . . . . . . . . . . . . 13 𝑥((𝑥𝐴𝐵)‘𝑧)
8879, 80, 87nfbr 5077 . . . . . . . . . . . 12 𝑥 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
8986, 88nfrex 3268 . . . . . . . . . . 11 𝑥𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
9085, 89nfbi 1904 . . . . . . . . . 10 𝑥(𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))
91 fveq2 6645 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
9291breq2d 5042 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑡 < (𝐺𝑥) ↔ 𝑡 < (𝐺𝑧)))
93 fveq2 6645 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
9493breq2d 5042 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9594rexbidv 3256 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9692, 95bibi12d 349 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
9778, 90, 96cbvralw 3387 . . . . . . . . 9 (∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9877, 97sylib 221 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9998r19.21bi 3173 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
10043adantr 484 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
101100ffvelrnda 6828 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
102 rexr 10676 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℝ*)
103102ad2antlr 726 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → 𝑡 ∈ ℝ*)
104 elioopnf 12821 . . . . . . . . 9 (𝑡 ∈ ℝ* → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
105103, 104syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
106101, 105mpbirand 706 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < (𝐺𝑧)))
107103adantr 484 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → 𝑡 ∈ ℝ*)
108 elioopnf 12821 . . . . . . . . . 10 (𝑡 ∈ ℝ* → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
109107, 108syl 17 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
1102fmpttd 6856 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵):𝐴⟶ℝ)
111110ffvelrnda 6828 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℝ)
112111biantrurd 536 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
113112an32s 651 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
114113adantllr 718 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
115109, 114bitr4d 285 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
116115rexbidva 3255 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
11799, 106, 1163bitr4d 314 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
118117pm5.32da 582 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ((𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
11943ffnd 6488 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
120119adantr 484 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐺 Fn 𝐴)
121 elpreima 6805 . . . . . 6 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
122120, 121syl 17 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
123 eliun 4885 . . . . . 6 (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
124110ffnd 6488 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) Fn 𝐴)
125 elpreima 6805 . . . . . . . . . 10 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
126124, 125syl 17 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
127126rexbidva 3255 . . . . . . . 8 (𝜑 → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
128127adantr 484 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
129 r19.42v 3303 . . . . . . 7 (∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
130128, 129syl6bb 290 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
131123, 130syl5bb 286 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
132118, 122, 1313bitr4d 314 . . . 4 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ 𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞))))
133132eqrdv 2796 . . 3 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) = 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
134 zex 11978 . . . . . . 7 ℤ ∈ V
135 uzssz 12252 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
136 ssdomg 8538 . . . . . . 7 (ℤ ∈ V → ((ℤ𝑀) ⊆ ℤ → (ℤ𝑀) ≼ ℤ))
137134, 135, 136mp2 9 . . . . . 6 (ℤ𝑀) ≼ ℤ
1389, 137eqbrtri 5051 . . . . 5 𝑍 ≼ ℤ
139 znnen 15557 . . . . 5 ℤ ≈ ℕ
140 domentr 8551 . . . . 5 ((𝑍 ≼ ℤ ∧ ℤ ≈ ℕ) → 𝑍 ≼ ℕ)
141138, 139, 140mp2an 691 . . . 4 𝑍 ≼ ℕ
142 mbfsup.4 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
143 mbfima 24234 . . . . . . 7 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑥𝐴𝐵):𝐴⟶ℝ) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
144142, 110, 143syl2anc 587 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
145144ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
146145adantr 484 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
147 iunmbl2 24161 . . . 4 ((𝑍 ≼ ℕ ∧ ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
148141, 146, 147sylancr 590 . . 3 ((𝜑𝑡 ∈ ℝ) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
149133, 148eqeltrd 2890 . 2 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) ∈ dom vol)
15043, 149ismbf3d 24258 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243   ciun 4881   class class class wbr 5030  cmpt 5110   I cid 5424  ccnv 5518  dom cdm 5519  ran crn 5520  cima 5522   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  cen 8489  cdom 8490  supcsup 8888  cr 10525  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cn 11625  cz 11969  cuz 12231  (,)cioo 12726  volcvol 24067  MblFncmbf 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cc 9846  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-xadd 12496  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-xmet 20084  df-met 20085  df-ovol 24068  df-vol 24069  df-mbf 24223
This theorem is referenced by:  mbfinf  24269  mbflimsup  24270
  Copyright terms: Public domain W3C validator