MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Structured version   Visualization version   GIF version

Theorem mbfsup 23725
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, 𝐵(𝑛, 𝑥) is a function of both 𝑛 and 𝑥, since it is an 𝑛-indexed sequence of functions on 𝑥. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1 𝑍 = (ℤ𝑀)
mbfsup.2 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
mbfsup.3 (𝜑𝑀 ∈ ℤ)
mbfsup.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfsup.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfsup.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
Assertion
Ref Expression
mbfsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑦,𝐵   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfsup
Dummy variables 𝑚 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
21anassrs 459 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32an32s 642 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 6577 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6232 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfsup.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 uzid 11904 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9syl6eleqr 2855 . . . . . . . 8 (𝜑𝑀𝑍)
1110adantr 472 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2765 . . . . . . . 8 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6204 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2847 . . . . . 6 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4088 . . . . 5 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5512 . . . . . 6 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 2989 . . . . 5 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 209 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfsup.6 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
204ffnd 6226 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq1 4814 . . . . . . . . 9 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑧𝑦 ↔ ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2221ralrn 6554 . . . . . . . 8 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2320, 22syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
24 nffvmpt1 6388 . . . . . . . . . 10 𝑛((𝑛𝑍𝐵)‘𝑚)
25 nfcv 2907 . . . . . . . . . 10 𝑛
26 nfcv 2907 . . . . . . . . . 10 𝑛𝑦
2724, 25, 26nfbr 4858 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦
28 nfv 2009 . . . . . . . . 9 𝑚((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦
29 fveq2 6377 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq1d 4821 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦))
3127, 28, 30cbvral 3315 . . . . . . . 8 (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦)
32 simpr 477 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6482 . . . . . . . . . . 11 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 579 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq1d 4821 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦𝐵𝑦))
3635ralbidva 3132 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3731, 36syl5bb 274 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3823, 37bitrd 270 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3938rexbidv 3199 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦))
4019, 39mpbird 248 . . . 4 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦)
41 suprcl 11239 . . . 4 ((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦) → sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ ℝ)
425, 18, 40, 41syl3anc 1490 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ ℝ)
43 mbfsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
4442, 43fmptd 6576 . 2 (𝜑𝐺:𝐴⟶ℝ)
45 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝐴)
46 ltso 10374 . . . . . . . . . . . . . 14 < Or ℝ
4746supex 8578 . . . . . . . . . . . . 13 sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V
4843fvmpt2 6482 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4945, 47, 48sylancl 580 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
5049breq2d 4823 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ 𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < )))
515, 18, 403jca 1158 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
5251adantlr 706 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
53 simplr 785 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑡 ∈ ℝ)
54 suprlub 11243 . . . . . . . . . . . 12 (((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦) ∧ 𝑡 ∈ ℝ) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5552, 53, 54syl2anc 579 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5620adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
57 breq2 4815 . . . . . . . . . . . . . 14 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑡 < 𝑧𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5857rexrn 6553 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵) Fn 𝑍 → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5956, 58syl 17 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
60 nfcv 2907 . . . . . . . . . . . . . . 15 𝑛𝑡
61 nfcv 2907 . . . . . . . . . . . . . . 15 𝑛 <
6260, 61, 24nfbr 4858 . . . . . . . . . . . . . 14 𝑛 𝑡 < ((𝑛𝑍𝐵)‘𝑚)
63 nfv 2009 . . . . . . . . . . . . . 14 𝑚 𝑡 < ((𝑛𝑍𝐵)‘𝑛)
6429breq2d 4823 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑡 < ((𝑛𝑍𝐵)‘𝑛)))
6562, 63, 64cbvrex 3316 . . . . . . . . . . . . 13 (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛))
6612fvmpt2i 6481 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → ((𝑛𝑍𝐵)‘𝑛) = ( I ‘𝐵))
67 eqid 2765 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
6867fvmpt2i 6481 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6968adantl 473 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
7069eqcomd 2771 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → ( I ‘𝐵) = ((𝑥𝐴𝐵)‘𝑥))
7166, 70sylan9eqr 2821 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = ((𝑥𝐴𝐵)‘𝑥))
7271breq2d 4823 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7372rexbidva 3196 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7473adantlr 706 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7565, 74syl5bb 274 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7659, 75bitrd 270 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7750, 55, 763bitrd 296 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7877ralrimiva 3113 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
79 nfv 2009 . . . . . . . . . 10 𝑧(𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥))
80 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑡
81 nfcv 2907 . . . . . . . . . . . 12 𝑥 <
82 nfmpt1 4908 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
8343, 82nfcxfr 2905 . . . . . . . . . . . . 13 𝑥𝐺
84 nfcv 2907 . . . . . . . . . . . . 13 𝑥𝑧
8583, 84nffv 6387 . . . . . . . . . . . 12 𝑥(𝐺𝑧)
8680, 81, 85nfbr 4858 . . . . . . . . . . 11 𝑥 𝑡 < (𝐺𝑧)
87 nfcv 2907 . . . . . . . . . . . 12 𝑥𝑍
88 nffvmpt1 6388 . . . . . . . . . . . . 13 𝑥((𝑥𝐴𝐵)‘𝑧)
8980, 81, 88nfbr 4858 . . . . . . . . . . . 12 𝑥 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
9087, 89nfrex 3153 . . . . . . . . . . 11 𝑥𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
9186, 90nfbi 2002 . . . . . . . . . 10 𝑥(𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))
92 fveq2 6377 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
9392breq2d 4823 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑡 < (𝐺𝑥) ↔ 𝑡 < (𝐺𝑧)))
94 fveq2 6377 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
9594breq2d 4823 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9695rexbidv 3199 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9793, 96bibi12d 336 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
9879, 91, 97cbvral 3315 . . . . . . . . 9 (∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9978, 98sylib 209 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
10099r19.21bi 3079 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
101 rexr 10341 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℝ*)
102101ad2antlr 718 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → 𝑡 ∈ ℝ*)
103 elioopnf 12473 . . . . . . . . 9 (𝑡 ∈ ℝ* → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
104102, 103syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
10544adantr 472 . . . . . . . . . 10 ((𝜑𝑡 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
106105ffvelrnda 6551 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
107106biantrurd 528 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝑡 < (𝐺𝑧) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
108104, 107bitr4d 273 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < (𝐺𝑧)))
109102adantr 472 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → 𝑡 ∈ ℝ*)
110 elioopnf 12473 . . . . . . . . . 10 (𝑡 ∈ ℝ* → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
111109, 110syl 17 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
1122fmpttd 6577 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵):𝐴⟶ℝ)
113112ffvelrnda 6551 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℝ)
114113biantrurd 528 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
115114an32s 642 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
116115adantllr 710 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
117111, 116bitr4d 273 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
118117rexbidva 3196 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
119100, 108, 1183bitr4d 302 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
120119pm5.32da 574 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ((𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
12144ffnd 6226 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
122121adantr 472 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐺 Fn 𝐴)
123 elpreima 6529 . . . . . 6 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
124122, 123syl 17 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
125 eliun 4682 . . . . . 6 (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
126112ffnd 6226 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) Fn 𝐴)
127 elpreima 6529 . . . . . . . . . 10 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
128126, 127syl 17 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
129128rexbidva 3196 . . . . . . . 8 (𝜑 → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
130129adantr 472 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
131 r19.42v 3239 . . . . . . 7 (∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
132130, 131syl6bb 278 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
133125, 132syl5bb 274 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
134120, 124, 1333bitr4d 302 . . . 4 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ 𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞))))
135134eqrdv 2763 . . 3 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) = 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
136 zex 11635 . . . . . . 7 ℤ ∈ V
137 uzssz 11909 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
138 ssdomg 8208 . . . . . . 7 (ℤ ∈ V → ((ℤ𝑀) ⊆ ℤ → (ℤ𝑀) ≼ ℤ))
139136, 137, 138mp2 9 . . . . . 6 (ℤ𝑀) ≼ ℤ
1409, 139eqbrtri 4832 . . . . 5 𝑍 ≼ ℤ
141 znnen 15226 . . . . 5 ℤ ≈ ℕ
142 domentr 8221 . . . . 5 ((𝑍 ≼ ℤ ∧ ℤ ≈ ℕ) → 𝑍 ≼ ℕ)
143140, 141, 142mp2an 683 . . . 4 𝑍 ≼ ℕ
144 mbfsup.4 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
145 mbfima 23691 . . . . . . 7 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑥𝐴𝐵):𝐴⟶ℝ) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
146144, 112, 145syl2anc 579 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
147146ralrimiva 3113 . . . . 5 (𝜑 → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
148147adantr 472 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
149 iunmbl2 23618 . . . 4 ((𝑍 ≼ ℕ ∧ ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
150143, 148, 149sylancr 581 . . 3 ((𝜑𝑡 ∈ ℝ) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
151135, 150eqeltrd 2844 . 2 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) ∈ dom vol)
15244, 151ismbf3d 23715 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  wne 2937  wral 3055  wrex 3056  Vcvv 3350  wss 3734  c0 4081   ciun 4678   class class class wbr 4811  cmpt 4890   I cid 5186  ccnv 5278  dom cdm 5279  ran crn 5280  cima 5282   Fn wfn 6065  wf 6066  cfv 6070  (class class class)co 6844  cen 8159  cdom 8160  supcsup 8555  cr 10190  +∞cpnf 10327  *cxr 10329   < clt 10330  cle 10331  cn 11276  cz 11626  cuz 11889  (,)cioo 12380  volcvol 23524  MblFncmbf 23675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-inf2 8755  ax-cc 9512  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-disj 4780  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-of 7097  df-om 7266  df-1st 7368  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-1o 7766  df-2o 7767  df-oadd 7770  df-omul 7771  df-er 7949  df-map 8064  df-pm 8065  df-en 8163  df-dom 8164  df-sdom 8165  df-fin 8166  df-sup 8557  df-inf 8558  df-oi 8624  df-card 9018  df-acn 9021  df-cda 9245  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-q 11993  df-rp 12032  df-xadd 12150  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12537  df-fzo 12677  df-fl 12804  df-seq 13012  df-exp 13071  df-hash 13325  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-clim 14507  df-rlim 14508  df-sum 14705  df-xmet 20015  df-met 20016  df-ovol 23525  df-vol 23526  df-mbf 23680
This theorem is referenced by:  mbfinf  23726  mbflimsup  23727
  Copyright terms: Public domain W3C validator