MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mbfsup Structured version   Visualization version   GIF version

Theorem mbfsup 25582
Description: The supremum of a sequence of measurable, real-valued functions is measurable. Note that in this and related theorems, 𝐵(𝑛, 𝑥) is a function of both 𝑛 and 𝑥, since it is an 𝑛-indexed sequence of functions on 𝑥. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
mbfsup.1 𝑍 = (ℤ𝑀)
mbfsup.2 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
mbfsup.3 (𝜑𝑀 ∈ ℤ)
mbfsup.4 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
mbfsup.5 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
mbfsup.6 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
Assertion
Ref Expression
mbfsup (𝜑𝐺 ∈ MblFn)
Distinct variable groups:   𝑥,𝑛,𝑦,𝐴   𝑦,𝐵   𝜑,𝑛,𝑥,𝑦   𝑛,𝑍,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem mbfsup
Dummy variables 𝑚 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mbfsup.5 . . . . . . . 8 ((𝜑 ∧ (𝑛𝑍𝑥𝐴)) → 𝐵 ∈ ℝ)
21anassrs 467 . . . . . . 7 (((𝜑𝑛𝑍) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
32an32s 652 . . . . . 6 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝐵 ∈ ℝ)
43fmpttd 7053 . . . . 5 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵):𝑍⟶ℝ)
54frnd 6664 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ⊆ ℝ)
6 mbfsup.3 . . . . . . . . . 10 (𝜑𝑀 ∈ ℤ)
7 uzid 12769 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
86, 7syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (ℤ𝑀))
9 mbfsup.1 . . . . . . . . 9 𝑍 = (ℤ𝑀)
108, 9eleqtrrdi 2839 . . . . . . . 8 (𝜑𝑀𝑍)
1110adantr 480 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑀𝑍)
12 eqid 2729 . . . . . . . 8 (𝑛𝑍𝐵) = (𝑛𝑍𝐵)
1312, 3dmmptd 6631 . . . . . . 7 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) = 𝑍)
1411, 13eleqtrrd 2831 . . . . . 6 ((𝜑𝑥𝐴) → 𝑀 ∈ dom (𝑛𝑍𝐵))
1514ne0d 4295 . . . . 5 ((𝜑𝑥𝐴) → dom (𝑛𝑍𝐵) ≠ ∅)
16 dm0rn0 5871 . . . . . 6 (dom (𝑛𝑍𝐵) = ∅ ↔ ran (𝑛𝑍𝐵) = ∅)
1716necon3bii 2977 . . . . 5 (dom (𝑛𝑍𝐵) ≠ ∅ ↔ ran (𝑛𝑍𝐵) ≠ ∅)
1815, 17sylib 218 . . . 4 ((𝜑𝑥𝐴) → ran (𝑛𝑍𝐵) ≠ ∅)
19 mbfsup.6 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦)
204ffnd 6657 . . . . . . . 8 ((𝜑𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
21 breq1 5098 . . . . . . . . 9 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑧𝑦 ↔ ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2221ralrn 7026 . . . . . . . 8 ((𝑛𝑍𝐵) Fn 𝑍 → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
2320, 22syl 17 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦))
24 nffvmpt1 6837 . . . . . . . . . 10 𝑛((𝑛𝑍𝐵)‘𝑚)
25 nfcv 2891 . . . . . . . . . 10 𝑛
26 nfcv 2891 . . . . . . . . . 10 𝑛𝑦
2724, 25, 26nfbr 5142 . . . . . . . . 9 𝑛((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦
28 nfv 1914 . . . . . . . . 9 𝑚((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦
29 fveq2 6826 . . . . . . . . . 10 (𝑚 = 𝑛 → ((𝑛𝑍𝐵)‘𝑚) = ((𝑛𝑍𝐵)‘𝑛))
3029breq1d 5105 . . . . . . . . 9 (𝑚 = 𝑛 → (((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦))
3127, 28, 30cbvralw 3272 . . . . . . . 8 (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦)
32 simpr 484 . . . . . . . . . . 11 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → 𝑛𝑍)
3312fvmpt2 6945 . . . . . . . . . . 11 ((𝑛𝑍𝐵 ∈ ℝ) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3432, 3, 33syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = 𝐵)
3534breq1d 5105 . . . . . . . . 9 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦𝐵𝑦))
3635ralbidva 3150 . . . . . . . 8 ((𝜑𝑥𝐴) → (∀𝑛𝑍 ((𝑛𝑍𝐵)‘𝑛) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3731, 36bitrid 283 . . . . . . 7 ((𝜑𝑥𝐴) → (∀𝑚𝑍 ((𝑛𝑍𝐵)‘𝑚) ≤ 𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3823, 37bitrd 279 . . . . . 6 ((𝜑𝑥𝐴) → (∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∀𝑛𝑍 𝐵𝑦))
3938rexbidv 3153 . . . . 5 ((𝜑𝑥𝐴) → (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝐵𝑦))
4019, 39mpbird 257 . . . 4 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦)
415, 18, 40suprcld 12107 . . 3 ((𝜑𝑥𝐴) → sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ ℝ)
42 mbfsup.2 . . 3 𝐺 = (𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
4341, 42fmptd 7052 . 2 (𝜑𝐺:𝐴⟶ℝ)
44 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑥𝐴)
45 ltso 11215 . . . . . . . . . . . . . 14 < Or ℝ
4645supex 9373 . . . . . . . . . . . . 13 sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V
4742fvmpt2 6945 . . . . . . . . . . . . 13 ((𝑥𝐴 ∧ sup(ran (𝑛𝑍𝐵), ℝ, < ) ∈ V) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4844, 46, 47sylancl 586 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝐺𝑥) = sup(ran (𝑛𝑍𝐵), ℝ, < ))
4948breq2d 5107 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ 𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < )))
505, 18, 403jca 1128 . . . . . . . . . . . . 13 ((𝜑𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
5150adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦))
52 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → 𝑡 ∈ ℝ)
53 suprlub 12108 . . . . . . . . . . . 12 (((ran (𝑛𝑍𝐵) ⊆ ℝ ∧ ran (𝑛𝑍𝐵) ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran (𝑛𝑍𝐵)𝑧𝑦) ∧ 𝑡 ∈ ℝ) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5451, 52, 53syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < sup(ran (𝑛𝑍𝐵), ℝ, < ) ↔ ∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧))
5520adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑛𝑍𝐵) Fn 𝑍)
56 breq2 5099 . . . . . . . . . . . . . 14 (𝑧 = ((𝑛𝑍𝐵)‘𝑚) → (𝑡 < 𝑧𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5756rexrn 7025 . . . . . . . . . . . . 13 ((𝑛𝑍𝐵) Fn 𝑍 → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
5855, 57syl 17 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚)))
59 nfcv 2891 . . . . . . . . . . . . . . 15 𝑛𝑡
60 nfcv 2891 . . . . . . . . . . . . . . 15 𝑛 <
6159, 60, 24nfbr 5142 . . . . . . . . . . . . . 14 𝑛 𝑡 < ((𝑛𝑍𝐵)‘𝑚)
62 nfv 1914 . . . . . . . . . . . . . 14 𝑚 𝑡 < ((𝑛𝑍𝐵)‘𝑛)
6329breq2d 5107 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ 𝑡 < ((𝑛𝑍𝐵)‘𝑛)))
6461, 62, 63cbvrexw 3273 . . . . . . . . . . . . 13 (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛))
6512fvmpt2i 6944 . . . . . . . . . . . . . . . . 17 (𝑛𝑍 → ((𝑛𝑍𝐵)‘𝑛) = ( I ‘𝐵))
66 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
6766fvmpt2i 6944 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6867adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥𝐴) → ((𝑥𝐴𝐵)‘𝑥) = ( I ‘𝐵))
6968eqcomd 2735 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → ( I ‘𝐵) = ((𝑥𝐴𝐵)‘𝑥))
7065, 69sylan9eqr 2786 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → ((𝑛𝑍𝐵)‘𝑛) = ((𝑥𝐴𝐵)‘𝑥))
7170breq2d 5107 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7271rexbidva 3151 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7372adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑛𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑛) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7464, 73bitrid 283 . . . . . . . . . . . 12 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑚𝑍 𝑡 < ((𝑛𝑍𝐵)‘𝑚) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7558, 74bitrd 279 . . . . . . . . . . 11 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (∃𝑧 ∈ ran (𝑛𝑍𝐵)𝑡 < 𝑧 ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7649, 54, 753bitrd 305 . . . . . . . . . 10 (((𝜑𝑡 ∈ ℝ) ∧ 𝑥𝐴) → (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
7776ralrimiva 3121 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → ∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)))
78 nfv 1914 . . . . . . . . . 10 𝑧(𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥))
79 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑡
80 nfcv 2891 . . . . . . . . . . . 12 𝑥 <
81 nfmpt1 5194 . . . . . . . . . . . . . 14 𝑥(𝑥𝐴 ↦ sup(ran (𝑛𝑍𝐵), ℝ, < ))
8242, 81nfcxfr 2889 . . . . . . . . . . . . 13 𝑥𝐺
83 nfcv 2891 . . . . . . . . . . . . 13 𝑥𝑧
8482, 83nffv 6836 . . . . . . . . . . . 12 𝑥(𝐺𝑧)
8579, 80, 84nfbr 5142 . . . . . . . . . . 11 𝑥 𝑡 < (𝐺𝑧)
86 nfcv 2891 . . . . . . . . . . . 12 𝑥𝑍
87 nffvmpt1 6837 . . . . . . . . . . . . 13 𝑥((𝑥𝐴𝐵)‘𝑧)
8879, 80, 87nfbr 5142 . . . . . . . . . . . 12 𝑥 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
8986, 88nfrexw 3278 . . . . . . . . . . 11 𝑥𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)
9085, 89nfbi 1903 . . . . . . . . . 10 𝑥(𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))
91 fveq2 6826 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝐺𝑥) = (𝐺𝑧))
9291breq2d 5107 . . . . . . . . . . 11 (𝑥 = 𝑧 → (𝑡 < (𝐺𝑥) ↔ 𝑡 < (𝐺𝑧)))
93 fveq2 6826 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → ((𝑥𝐴𝐵)‘𝑥) = ((𝑥𝐴𝐵)‘𝑧))
9493breq2d 5107 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9594rexbidv 3153 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9692, 95bibi12d 345 . . . . . . . . . 10 (𝑥 = 𝑧 → ((𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
9778, 90, 96cbvralw 3272 . . . . . . . . 9 (∀𝑥𝐴 (𝑡 < (𝐺𝑥) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑥)) ↔ ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9877, 97sylib 218 . . . . . . . 8 ((𝜑𝑡 ∈ ℝ) → ∀𝑧𝐴 (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
9998r19.21bi 3221 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝑡 < (𝐺𝑧) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
10043adantr 480 . . . . . . . . 9 ((𝜑𝑡 ∈ ℝ) → 𝐺:𝐴⟶ℝ)
101100ffvelcdmda 7022 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (𝐺𝑧) ∈ ℝ)
102 rexr 11180 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℝ*)
103102ad2antlr 727 . . . . . . . . 9 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → 𝑡 ∈ ℝ*)
104 elioopnf 13365 . . . . . . . . 9 (𝑡 ∈ ℝ* → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
105103, 104syl 17 . . . . . . . 8 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ((𝐺𝑧) ∈ ℝ ∧ 𝑡 < (𝐺𝑧))))
106101, 105mpbirand 707 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < (𝐺𝑧)))
107103adantr 480 . . . . . . . . . 10 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → 𝑡 ∈ ℝ*)
108 elioopnf 13365 . . . . . . . . . 10 (𝑡 ∈ ℝ* → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
109107, 108syl 17 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
1102fmpttd 7053 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵):𝐴⟶ℝ)
111110ffvelcdmda 7022 . . . . . . . . . . . 12 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → ((𝑥𝐴𝐵)‘𝑧) ∈ ℝ)
112111biantrurd 532 . . . . . . . . . . 11 (((𝜑𝑛𝑍) ∧ 𝑧𝐴) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
113112an32s 652 . . . . . . . . . 10 (((𝜑𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
114113adantllr 719 . . . . . . . . 9 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (𝑡 < ((𝑥𝐴𝐵)‘𝑧) ↔ (((𝑥𝐴𝐵)‘𝑧) ∈ ℝ ∧ 𝑡 < ((𝑥𝐴𝐵)‘𝑧))))
115109, 114bitr4d 282 . . . . . . . 8 ((((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) ∧ 𝑛𝑍) → (((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
116115rexbidva 3151 . . . . . . 7 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → (∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 𝑡 < ((𝑥𝐴𝐵)‘𝑧)))
11799, 106, 1163bitr4d 311 . . . . . 6 (((𝜑𝑡 ∈ ℝ) ∧ 𝑧𝐴) → ((𝐺𝑧) ∈ (𝑡(,)+∞) ↔ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
118117pm5.32da 579 . . . . 5 ((𝜑𝑡 ∈ ℝ) → ((𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
11943ffnd 6657 . . . . . . 7 (𝜑𝐺 Fn 𝐴)
120119adantr 480 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → 𝐺 Fn 𝐴)
121 elpreima 6996 . . . . . 6 (𝐺 Fn 𝐴 → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
122120, 121syl 17 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ (𝐺𝑧) ∈ (𝑡(,)+∞))))
123 eliun 4948 . . . . . 6 (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
124110ffnd 6657 . . . . . . . . . 10 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) Fn 𝐴)
125 elpreima 6996 . . . . . . . . . 10 ((𝑥𝐴𝐵) Fn 𝐴 → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
126124, 125syl 17 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
127126rexbidva 3151 . . . . . . . 8 (𝜑 → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
128127adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ ∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
129 r19.42v 3161 . . . . . . 7 (∃𝑛𝑍 (𝑧𝐴 ∧ ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞)))
130128, 129bitrdi 287 . . . . . 6 ((𝜑𝑡 ∈ ℝ) → (∃𝑛𝑍 𝑧 ∈ ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
131123, 130bitrid 283 . . . . 5 ((𝜑𝑡 ∈ ℝ) → (𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ↔ (𝑧𝐴 ∧ ∃𝑛𝑍 ((𝑥𝐴𝐵)‘𝑧) ∈ (𝑡(,)+∞))))
132118, 122, 1313bitr4d 311 . . . 4 ((𝜑𝑡 ∈ ℝ) → (𝑧 ∈ (𝐺 “ (𝑡(,)+∞)) ↔ 𝑧 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞))))
133132eqrdv 2727 . . 3 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) = 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)))
134 zex 12499 . . . . . . 7 ℤ ∈ V
135 uzssz 12775 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
136 ssdomg 8932 . . . . . . 7 (ℤ ∈ V → ((ℤ𝑀) ⊆ ℤ → (ℤ𝑀) ≼ ℤ))
137134, 135, 136mp2 9 . . . . . 6 (ℤ𝑀) ≼ ℤ
1389, 137eqbrtri 5116 . . . . 5 𝑍 ≼ ℤ
139 znnen 16140 . . . . 5 ℤ ≈ ℕ
140 domentr 8945 . . . . 5 ((𝑍 ≼ ℤ ∧ ℤ ≈ ℕ) → 𝑍 ≼ ℕ)
141138, 139, 140mp2an 692 . . . 4 𝑍 ≼ ℕ
142 mbfsup.4 . . . . . . 7 ((𝜑𝑛𝑍) → (𝑥𝐴𝐵) ∈ MblFn)
143 mbfima 25548 . . . . . . 7 (((𝑥𝐴𝐵) ∈ MblFn ∧ (𝑥𝐴𝐵):𝐴⟶ℝ) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
144142, 110, 143syl2anc 584 . . . . . 6 ((𝜑𝑛𝑍) → ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
145144ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
146145adantr 480 . . . 4 ((𝜑𝑡 ∈ ℝ) → ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
147 iunmbl2 25475 . . . 4 ((𝑍 ≼ ℕ ∧ ∀𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
148141, 146, 147sylancr 587 . . 3 ((𝜑𝑡 ∈ ℝ) → 𝑛𝑍 ((𝑥𝐴𝐵) “ (𝑡(,)+∞)) ∈ dom vol)
149133, 148eqeltrd 2828 . 2 ((𝜑𝑡 ∈ ℝ) → (𝐺 “ (𝑡(,)+∞)) ∈ dom vol)
15043, 149ismbf3d 25572 1 (𝜑𝐺 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3438  wss 3905  c0 4286   ciun 4944   class class class wbr 5095  cmpt 5176   I cid 5517  ccnv 5622  dom cdm 5623  ran crn 5624  cima 5626   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  cen 8876  cdom 8877  supcsup 9349  cr 11027  +∞cpnf 11165  *cxr 11167   < clt 11168  cle 11169  cn 12147  cz 12490  cuz 12754  (,)cioo 13267  volcvol 25381  MblFncmbf 25532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11368  df-neg 11369  df-div 11797  df-nn 12148  df-2 12210  df-3 12211  df-n0 12404  df-z 12491  df-uz 12755  df-q 12869  df-rp 12913  df-xadd 13034  df-ioo 13271  df-ioc 13272  df-ico 13273  df-icc 13274  df-fz 13430  df-fzo 13577  df-fl 13715  df-seq 13928  df-exp 13988  df-hash 14257  df-cj 15025  df-re 15026  df-im 15027  df-sqrt 15161  df-abs 15162  df-clim 15414  df-rlim 15415  df-sum 15613  df-xmet 21273  df-met 21274  df-ovol 25382  df-vol 25383  df-mbf 25537
This theorem is referenced by:  mbfinf  25583  mbflimsup  25584
  Copyright terms: Public domain W3C validator