Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfitg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in ∫𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
nfitg.1 | ⊢ Ⅎ𝑦𝐴 |
nfitg.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfitg | ⊢ Ⅎ𝑦∫𝐴𝐵 d𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))) | |
2 | 1 | dfitg 25040 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
3 | nfcv 2904 | . . 3 ⊢ Ⅎ𝑦(0...3) | |
4 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑦(i↑𝑘) | |
5 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑦 · | |
6 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑦∫2 | |
7 | nfcv 2904 | . . . . . 6 ⊢ Ⅎ𝑦ℝ | |
8 | nfitg.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
9 | 8 | nfcri 2891 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
10 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑦0 | |
11 | nfcv 2904 | . . . . . . . . 9 ⊢ Ⅎ𝑦 ≤ | |
12 | nfcv 2904 | . . . . . . . . . 10 ⊢ Ⅎ𝑦ℜ | |
13 | nfitg.2 | . . . . . . . . . . 11 ⊢ Ⅎ𝑦𝐵 | |
14 | nfcv 2904 | . . . . . . . . . . 11 ⊢ Ⅎ𝑦 / | |
15 | 13, 14, 4 | nfov 7367 | . . . . . . . . . 10 ⊢ Ⅎ𝑦(𝐵 / (i↑𝑘)) |
16 | 12, 15 | nffv 6835 | . . . . . . . . 9 ⊢ Ⅎ𝑦(ℜ‘(𝐵 / (i↑𝑘))) |
17 | 10, 11, 16 | nfbr 5139 | . . . . . . . 8 ⊢ Ⅎ𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) |
18 | 9, 17 | nfan 1901 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) |
19 | 18, 16, 10 | nfif 4503 | . . . . . 6 ⊢ Ⅎ𝑦if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) |
20 | 7, 19 | nfmpt 5199 | . . . . 5 ⊢ Ⅎ𝑦(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) |
21 | 6, 20 | nffv 6835 | . . . 4 ⊢ Ⅎ𝑦(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) |
22 | 4, 5, 21 | nfov 7367 | . . 3 ⊢ Ⅎ𝑦((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
23 | 3, 22 | nfsum 15501 | . 2 ⊢ Ⅎ𝑦Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
24 | 2, 23 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑦∫𝐴𝐵 d𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 ∈ wcel 2105 Ⅎwnfc 2884 ifcif 4473 class class class wbr 5092 ↦ cmpt 5175 ‘cfv 6479 (class class class)co 7337 ℝcr 10971 0cc0 10972 ici 10974 · cmul 10977 ≤ cle 11111 / cdiv 11733 3c3 12130 ...cfz 13340 ↑cexp 13883 ℜcre 14907 Σcsu 15496 ∫2citg2 24886 ∫citg 24888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-n0 12335 df-z 12421 df-uz 12684 df-fz 13341 df-seq 13823 df-sum 15497 df-itg 24893 |
This theorem is referenced by: itgfsum 25097 itgulm2 25674 fourierdlem112 44104 |
Copyright terms: Public domain | W3C validator |