| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfitg | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in ∫𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.) |
| Ref | Expression |
|---|---|
| nfitg.1 | ⊢ Ⅎ𝑦𝐴 |
| nfitg.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfitg | ⊢ Ⅎ𝑦∫𝐴𝐵 d𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘))) | |
| 2 | 1 | dfitg 25670 | . 2 ⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
| 3 | nfcv 2891 | . . 3 ⊢ Ⅎ𝑦(0...3) | |
| 4 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑦(i↑𝑘) | |
| 5 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑦 · | |
| 6 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑦∫2 | |
| 7 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑦ℝ | |
| 8 | nfitg.1 | . . . . . . . . 9 ⊢ Ⅎ𝑦𝐴 | |
| 9 | 8 | nfcri 2883 | . . . . . . . 8 ⊢ Ⅎ𝑦 𝑥 ∈ 𝐴 |
| 10 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑦0 | |
| 11 | nfcv 2891 | . . . . . . . . 9 ⊢ Ⅎ𝑦 ≤ | |
| 12 | nfcv 2891 | . . . . . . . . . 10 ⊢ Ⅎ𝑦ℜ | |
| 13 | nfitg.2 | . . . . . . . . . . 11 ⊢ Ⅎ𝑦𝐵 | |
| 14 | nfcv 2891 | . . . . . . . . . . 11 ⊢ Ⅎ𝑦 / | |
| 15 | 13, 14, 4 | nfov 7417 | . . . . . . . . . 10 ⊢ Ⅎ𝑦(𝐵 / (i↑𝑘)) |
| 16 | 12, 15 | nffv 6868 | . . . . . . . . 9 ⊢ Ⅎ𝑦(ℜ‘(𝐵 / (i↑𝑘))) |
| 17 | 10, 11, 16 | nfbr 5154 | . . . . . . . 8 ⊢ Ⅎ𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘))) |
| 18 | 9, 17 | nfan 1899 | . . . . . . 7 ⊢ Ⅎ𝑦(𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))) |
| 19 | 18, 16, 10 | nfif 4519 | . . . . . 6 ⊢ Ⅎ𝑦if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0) |
| 20 | 7, 19 | nfmpt 5205 | . . . . 5 ⊢ Ⅎ𝑦(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)) |
| 21 | 6, 20 | nffv 6868 | . . . 4 ⊢ Ⅎ𝑦(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))) |
| 22 | 4, 5, 21 | nfov 7417 | . . 3 ⊢ Ⅎ𝑦((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
| 23 | 3, 22 | nfsum 15657 | . 2 ⊢ Ⅎ𝑦Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥 ∈ 𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))) |
| 24 | 2, 23 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑦∫𝐴𝐵 d𝑥 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∈ wcel 2109 Ⅎwnfc 2876 ifcif 4488 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 0cc0 11068 ici 11070 · cmul 11073 ≤ cle 11209 / cdiv 11835 3c3 12242 ...cfz 13468 ↑cexp 14026 ℜcre 15063 Σcsu 15652 ∫2citg2 25517 ∫citg 25519 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-sum 15653 df-itg 25524 |
| This theorem is referenced by: itgfsum 25728 itgulm2 26318 fourierdlem112 46216 |
| Copyright terms: Public domain | W3C validator |