MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg Structured version   Visualization version   GIF version

Theorem nfitg 25733
Description: Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
nfitg.1 𝑦𝐴
nfitg.2 𝑦𝐵
Assertion
Ref Expression
nfitg 𝑦𝐴𝐵 d𝑥
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 25727 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nfcv 2899 . . 3 𝑦(0...3)
4 nfcv 2899 . . . 4 𝑦(i↑𝑘)
5 nfcv 2899 . . . 4 𝑦 ·
6 nfcv 2899 . . . . 5 𝑦2
7 nfcv 2899 . . . . . 6 𝑦
8 nfitg.1 . . . . . . . . 9 𝑦𝐴
98nfcri 2891 . . . . . . . 8 𝑦 𝑥𝐴
10 nfcv 2899 . . . . . . . . 9 𝑦0
11 nfcv 2899 . . . . . . . . 9 𝑦
12 nfcv 2899 . . . . . . . . . 10 𝑦
13 nfitg.2 . . . . . . . . . . 11 𝑦𝐵
14 nfcv 2899 . . . . . . . . . . 11 𝑦 /
1513, 14, 4nfov 7440 . . . . . . . . . 10 𝑦(𝐵 / (i↑𝑘))
1612, 15nffv 6891 . . . . . . . . 9 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
1710, 11, 16nfbr 5171 . . . . . . . 8 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
189, 17nfan 1899 . . . . . . 7 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1918, 16, 10nfif 4536 . . . . . 6 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
207, 19nfmpt 5224 . . . . 5 𝑦(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
216, 20nffv 6891 . . . 4 𝑦(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
224, 5, 21nfov 7440 . . 3 𝑦((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
233, 22nfsum 15712 . 2 𝑦Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
242, 23nfcxfr 2897 1 𝑦𝐴𝐵 d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2884  ifcif 4505   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  ici 11136   · cmul 11139  cle 11275   / cdiv 11899  3c3 12301  ...cfz 13529  cexp 14084  cre 15121  Σcsu 15707  2citg2 25574  citg 25576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-seq 14025  df-sum 15708  df-itg 25581
This theorem is referenced by:  itgfsum  25785  itgulm2  26375  fourierdlem112  46214
  Copyright terms: Public domain W3C validator