MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg Structured version   Visualization version   GIF version

Theorem nfitg 25676
Description: Bound-variable hypothesis builder for an integral: if 𝑦 is (effectively) not free in 𝐴 and 𝐵, it is not free in 𝐴𝐵 d𝑥. (Contributed by Mario Carneiro, 28-Jun-2014.)
Hypotheses
Ref Expression
nfitg.1 𝑦𝐴
nfitg.2 𝑦𝐵
Assertion
Ref Expression
nfitg 𝑦𝐴𝐵 d𝑥
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfitg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . 3 (ℜ‘(𝐵 / (i↑𝑘))) = (ℜ‘(𝐵 / (i↑𝑘)))
21dfitg 25670 . 2 𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
3 nfcv 2891 . . 3 𝑦(0...3)
4 nfcv 2891 . . . 4 𝑦(i↑𝑘)
5 nfcv 2891 . . . 4 𝑦 ·
6 nfcv 2891 . . . . 5 𝑦2
7 nfcv 2891 . . . . . 6 𝑦
8 nfitg.1 . . . . . . . . 9 𝑦𝐴
98nfcri 2883 . . . . . . . 8 𝑦 𝑥𝐴
10 nfcv 2891 . . . . . . . . 9 𝑦0
11 nfcv 2891 . . . . . . . . 9 𝑦
12 nfcv 2891 . . . . . . . . . 10 𝑦
13 nfitg.2 . . . . . . . . . . 11 𝑦𝐵
14 nfcv 2891 . . . . . . . . . . 11 𝑦 /
1513, 14, 4nfov 7417 . . . . . . . . . 10 𝑦(𝐵 / (i↑𝑘))
1612, 15nffv 6868 . . . . . . . . 9 𝑦(ℜ‘(𝐵 / (i↑𝑘)))
1710, 11, 16nfbr 5154 . . . . . . . 8 𝑦0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))
189, 17nfan 1899 . . . . . . 7 𝑦(𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘))))
1918, 16, 10nfif 4519 . . . . . 6 𝑦if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)
207, 19nfmpt 5205 . . . . 5 𝑦(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))
216, 20nffv 6868 . . . 4 𝑦(∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0)))
224, 5, 21nfov 7417 . . 3 𝑦((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
233, 22nfsum 15657 . 2 𝑦Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ if((𝑥𝐴 ∧ 0 ≤ (ℜ‘(𝐵 / (i↑𝑘)))), (ℜ‘(𝐵 / (i↑𝑘))), 0))))
242, 23nfcxfr 2889 1 𝑦𝐴𝐵 d𝑥
Colors of variables: wff setvar class
Syntax hints:  wa 395  wcel 2109  wnfc 2876  ifcif 4488   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  ici 11070   · cmul 11073  cle 11209   / cdiv 11835  3c3 12242  ...cfz 13468  cexp 14026  cre 15063  Σcsu 15652  2citg2 25517  citg 25519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-sum 15653  df-itg 25524
This theorem is referenced by:  itgfsum  25728  itgulm2  26318  fourierdlem112  46216
  Copyright terms: Public domain W3C validator