MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1t Structured version   Visualization version   GIF version

Theorem cnmpt1t 23168
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
cnmpt11.a (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1t (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ ⟨𝐴, 𝐡⟩) ∈ (𝐽 Cn (𝐾 Γ—t 𝐿)))
Distinct variable groups:   πœ‘,π‘₯   π‘₯,𝐽   π‘₯,𝑋   π‘₯,𝐾   π‘₯,𝐿
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)

Proof of Theorem cnmpt1t
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
2 toponuni 22415 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 = βˆͺ 𝐽)
3 mpteq1 5241 . . . 4 (𝑋 = βˆͺ 𝐽 β†’ (π‘₯ ∈ 𝑋 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩) = (π‘₯ ∈ βˆͺ 𝐽 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩))
41, 2, 33syl 18 . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩) = (π‘₯ ∈ βˆͺ 𝐽 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩))
5 simpr 485 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ π‘₯ ∈ 𝑋)
6 cnmpt11.a . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾))
7 cntop2 22744 . . . . . . . . . 10 ((π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) β†’ 𝐾 ∈ Top)
86, 7syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐾 ∈ Top)
9 toptopon2 22419 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
108, 9sylib 217 . . . . . . . 8 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
11 cnf2 22752 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾) ∧ (π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆβˆͺ 𝐾)
121, 10, 6, 11syl3anc 1371 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐴):π‘‹βŸΆβˆͺ 𝐾)
1312fvmptelcdm 7112 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐴 ∈ βˆͺ 𝐾)
14 eqid 2732 . . . . . . 7 (π‘₯ ∈ 𝑋 ↦ 𝐴) = (π‘₯ ∈ 𝑋 ↦ 𝐴)
1514fvmpt2 7009 . . . . . 6 ((π‘₯ ∈ 𝑋 ∧ 𝐴 ∈ βˆͺ 𝐾) β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯) = 𝐴)
165, 13, 15syl2anc 584 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯) = 𝐴)
17 cnmpt1t.b . . . . . . . . . 10 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿))
18 cntop2 22744 . . . . . . . . . 10 ((π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿) β†’ 𝐿 ∈ Top)
1917, 18syl 17 . . . . . . . . 9 (πœ‘ β†’ 𝐿 ∈ Top)
20 toptopon2 22419 . . . . . . . . 9 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
2119, 20sylib 217 . . . . . . . 8 (πœ‘ β†’ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿))
22 cnf2 22752 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐿 ∈ (TopOnβ€˜βˆͺ 𝐿) ∧ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿)) β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡):π‘‹βŸΆβˆͺ 𝐿)
231, 21, 17, 22syl3anc 1371 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ 𝐡):π‘‹βŸΆβˆͺ 𝐿)
2423fvmptelcdm 7112 . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ 𝐡 ∈ βˆͺ 𝐿)
25 eqid 2732 . . . . . . 7 (π‘₯ ∈ 𝑋 ↦ 𝐡) = (π‘₯ ∈ 𝑋 ↦ 𝐡)
2625fvmpt2 7009 . . . . . 6 ((π‘₯ ∈ 𝑋 ∧ 𝐡 ∈ βˆͺ 𝐿) β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯) = 𝐡)
275, 24, 26syl2anc 584 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯) = 𝐡)
2816, 27opeq12d 4881 . . . 4 ((πœ‘ ∧ π‘₯ ∈ 𝑋) β†’ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩ = ⟨𝐴, 𝐡⟩)
2928mpteq2dva 5248 . . 3 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩) = (π‘₯ ∈ 𝑋 ↦ ⟨𝐴, 𝐡⟩))
304, 29eqtr3d 2774 . 2 (πœ‘ β†’ (π‘₯ ∈ βˆͺ 𝐽 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩) = (π‘₯ ∈ 𝑋 ↦ ⟨𝐴, 𝐡⟩))
31 eqid 2732 . . . 4 βˆͺ 𝐽 = βˆͺ 𝐽
32 nfcv 2903 . . . . 5 β„²π‘¦βŸ¨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩
33 nffvmpt1 6902 . . . . . 6 β„²π‘₯((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘¦)
34 nffvmpt1 6902 . . . . . 6 β„²π‘₯((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘¦)
3533, 34nfop 4889 . . . . 5 β„²π‘₯⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘¦), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘¦)⟩
36 fveq2 6891 . . . . . 6 (π‘₯ = 𝑦 β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯) = ((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘¦))
37 fveq2 6891 . . . . . 6 (π‘₯ = 𝑦 β†’ ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯) = ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘¦))
3836, 37opeq12d 4881 . . . . 5 (π‘₯ = 𝑦 β†’ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩ = ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘¦), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘¦)⟩)
3932, 35, 38cbvmpt 5259 . . . 4 (π‘₯ ∈ βˆͺ 𝐽 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩) = (𝑦 ∈ βˆͺ 𝐽 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘¦), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘¦)⟩)
4031, 39txcnmpt 23127 . . 3 (((π‘₯ ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾) ∧ (π‘₯ ∈ 𝑋 ↦ 𝐡) ∈ (𝐽 Cn 𝐿)) β†’ (π‘₯ ∈ βˆͺ 𝐽 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩) ∈ (𝐽 Cn (𝐾 Γ—t 𝐿)))
416, 17, 40syl2anc 584 . 2 (πœ‘ β†’ (π‘₯ ∈ βˆͺ 𝐽 ↦ ⟨((π‘₯ ∈ 𝑋 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑋 ↦ 𝐡)β€˜π‘₯)⟩) ∈ (𝐽 Cn (𝐾 Γ—t 𝐿)))
4230, 41eqeltrrd 2834 1 (πœ‘ β†’ (π‘₯ ∈ 𝑋 ↦ ⟨𝐴, 𝐡⟩) ∈ (𝐽 Cn (𝐾 Γ—t 𝐿)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  βŸ¨cop 4634  βˆͺ cuni 4908   ↦ cmpt 5231  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7408  Topctop 22394  TopOnctopon 22411   Cn ccn 22727   Γ—t ctx 23063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-map 8821  df-topgen 17388  df-top 22395  df-topon 22412  df-bases 22448  df-cn 22730  df-tx 23065
This theorem is referenced by:  cnmpt12f  23169  xkoinjcn  23190  txconn  23192  imasnopn  23193  imasncld  23194  imasncls  23195  ptunhmeo  23311  xkohmeo  23318  cnrehmeo  24468  gg-cnrehmeo  35166
  Copyright terms: Public domain W3C validator