MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1t Structured version   Visualization version   GIF version

Theorem cnmpt1t 23657
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1t (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt1t
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponuni 22904 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 mpteq1 5238 . . . 4 (𝑋 = 𝐽 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
41, 2, 33syl 18 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
5 simpr 483 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥𝑋)
6 cnmpt11.a . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
7 cntop2 23233 . . . . . . . . . 10 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
9 toptopon2 22908 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 217 . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
11 cnf2 23241 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋 𝐾)
121, 10, 6, 11syl3anc 1368 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴):𝑋 𝐾)
1312fvmptelcdm 7119 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 𝐾)
14 eqid 2726 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
1514fvmpt2 7012 . . . . . 6 ((𝑥𝑋𝐴 𝐾) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
165, 13, 15syl2anc 582 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
17 cnmpt1t.b . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
18 cntop2 23233 . . . . . . . . . 10 ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
20 toptopon2 22908 . . . . . . . . 9 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
2119, 20sylib 217 . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
22 cnf2 23241 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋 𝐿)
231, 21, 17, 22syl3anc 1368 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵):𝑋 𝐿)
2423fvmptelcdm 7119 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 𝐿)
25 eqid 2726 . . . . . . 7 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2625fvmpt2 7012 . . . . . 6 ((𝑥𝑋𝐵 𝐿) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
275, 24, 26syl2anc 582 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2816, 27opeq12d 4879 . . . 4 ((𝜑𝑥𝑋) → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
2928mpteq2dva 5245 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
304, 29eqtr3d 2768 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
31 eqid 2726 . . . 4 𝐽 = 𝐽
32 nfcv 2892 . . . . 5 𝑦⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩
33 nffvmpt1 6904 . . . . . 6 𝑥((𝑥𝑋𝐴)‘𝑦)
34 nffvmpt1 6904 . . . . . 6 𝑥((𝑥𝑋𝐵)‘𝑦)
3533, 34nfop 4887 . . . . 5 𝑥⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩
36 fveq2 6893 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝑦))
37 fveq2 6893 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝑦))
3836, 37opeq12d 4879 . . . . 5 (𝑥 = 𝑦 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
3932, 35, 38cbvmpt 5256 . . . 4 (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑦 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
4031, 39txcnmpt 23616 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
416, 17, 40syl2anc 582 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
4230, 41eqeltrrd 2827 1 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  cop 4629   cuni 4905  cmpt 5228  wf 6542  cfv 6546  (class class class)co 7416  Topctop 22883  TopOnctopon 22900   Cn ccn 23216   ×t ctx 23552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7995  df-2nd 7996  df-map 8849  df-topgen 17453  df-top 22884  df-topon 22901  df-bases 22937  df-cn 23219  df-tx 23554
This theorem is referenced by:  cnmpt12f  23658  xkoinjcn  23679  txconn  23681  imasnopn  23682  imasncld  23683  imasncls  23684  ptunhmeo  23800  xkohmeo  23807  cnrehmeo  24966  cnrehmeoOLD  24967
  Copyright terms: Public domain W3C validator