MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnmpt1t Structured version   Visualization version   GIF version

Theorem cnmpt1t 22724
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
Assertion
Ref Expression
cnmpt1t (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐽   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt1t
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnmptid.j . . . 4 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 toponuni 21971 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
3 mpteq1 5163 . . . 4 (𝑋 = 𝐽 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
41, 2, 33syl 18 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩))
5 simpr 484 . . . . . 6 ((𝜑𝑥𝑋) → 𝑥𝑋)
6 cnmpt11.a . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
7 cntop2 22300 . . . . . . . . . 10 ((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
86, 7syl 17 . . . . . . . . 9 (𝜑𝐾 ∈ Top)
9 toptopon2 21975 . . . . . . . . 9 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘ 𝐾))
108, 9sylib 217 . . . . . . . 8 (𝜑𝐾 ∈ (TopOn‘ 𝐾))
11 cnf2 22308 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ 𝐾) ∧ (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾)) → (𝑥𝑋𝐴):𝑋 𝐾)
121, 10, 6, 11syl3anc 1369 . . . . . . 7 (𝜑 → (𝑥𝑋𝐴):𝑋 𝐾)
1312fvmptelrn 6969 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 𝐾)
14 eqid 2738 . . . . . . 7 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
1514fvmpt2 6868 . . . . . 6 ((𝑥𝑋𝐴 𝐾) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
165, 13, 15syl2anc 583 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐴)‘𝑥) = 𝐴)
17 cnmpt1t.b . . . . . . . . . 10 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
18 cntop2 22300 . . . . . . . . . 10 ((𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿) → 𝐿 ∈ Top)
1917, 18syl 17 . . . . . . . . 9 (𝜑𝐿 ∈ Top)
20 toptopon2 21975 . . . . . . . . 9 (𝐿 ∈ Top ↔ 𝐿 ∈ (TopOn‘ 𝐿))
2119, 20sylib 217 . . . . . . . 8 (𝜑𝐿 ∈ (TopOn‘ 𝐿))
22 cnf2 22308 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (TopOn‘ 𝐿) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥𝑋𝐵):𝑋 𝐿)
231, 21, 17, 22syl3anc 1369 . . . . . . 7 (𝜑 → (𝑥𝑋𝐵):𝑋 𝐿)
2423fvmptelrn 6969 . . . . . 6 ((𝜑𝑥𝑋) → 𝐵 𝐿)
25 eqid 2738 . . . . . . 7 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2625fvmpt2 6868 . . . . . 6 ((𝑥𝑋𝐵 𝐿) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
275, 24, 26syl2anc 583 . . . . 5 ((𝜑𝑥𝑋) → ((𝑥𝑋𝐵)‘𝑥) = 𝐵)
2816, 27opeq12d 4809 . . . 4 ((𝜑𝑥𝑋) → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
2928mpteq2dva 5170 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
304, 29eqtr3d 2780 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩))
31 eqid 2738 . . . 4 𝐽 = 𝐽
32 nfcv 2906 . . . . 5 𝑦⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩
33 nffvmpt1 6767 . . . . . 6 𝑥((𝑥𝑋𝐴)‘𝑦)
34 nffvmpt1 6767 . . . . . 6 𝑥((𝑥𝑋𝐵)‘𝑦)
3533, 34nfop 4817 . . . . 5 𝑥⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩
36 fveq2 6756 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐴)‘𝑥) = ((𝑥𝑋𝐴)‘𝑦))
37 fveq2 6756 . . . . . 6 (𝑥 = 𝑦 → ((𝑥𝑋𝐵)‘𝑥) = ((𝑥𝑋𝐵)‘𝑦))
3836, 37opeq12d 4809 . . . . 5 (𝑥 = 𝑦 → ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩ = ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
3932, 35, 38cbvmpt 5181 . . . 4 (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) = (𝑦 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑦), ((𝑥𝑋𝐵)‘𝑦)⟩)
4031, 39txcnmpt 22683 . . 3 (((𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾) ∧ (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿)) → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
416, 17, 40syl2anc 583 . 2 (𝜑 → (𝑥 𝐽 ↦ ⟨((𝑥𝑋𝐴)‘𝑥), ((𝑥𝑋𝐵)‘𝑥)⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
4230, 41eqeltrrd 2840 1 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  cop 4564   cuni 4836  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  Topctop 21950  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286  df-tx 22621
This theorem is referenced by:  cnmpt12f  22725  xkoinjcn  22746  txconn  22748  imasnopn  22749  imasncld  22750  imasncls  22751  ptunhmeo  22867  xkohmeo  22874  cnrehmeo  24022
  Copyright terms: Public domain W3C validator