![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qliftfuns | Structured version Visualization version GIF version |
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
Ref | Expression |
---|---|
qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) |
qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
qliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) | |
2 | nfcv 2897 | . . . . 5 ⊢ Ⅎ𝑦⟨[𝑥]𝑅, 𝐴⟩ | |
3 | nfcv 2897 | . . . . . 6 ⊢ Ⅎ𝑥[𝑦]𝑅 | |
4 | nfcsb1v 3913 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
5 | 3, 4 | nfop 4884 | . . . . 5 ⊢ Ⅎ𝑥⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩ |
6 | eceq1 8743 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
7 | csbeq1a 3902 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
8 | 6, 7 | opeq12d 4876 | . . . . 5 ⊢ (𝑥 = 𝑦 → ⟨[𝑥]𝑅, 𝐴⟩ = ⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩) |
9 | 2, 5, 8 | cbvmpt 5252 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = (𝑦 ∈ 𝑋 ↦ ⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩) |
10 | 9 | rneqi 5930 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = ran (𝑦 ∈ 𝑋 ↦ ⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩) |
11 | 1, 10 | eqtri 2754 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ ⟨[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴⟩) |
12 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
13 | 12 | ralrimiva 3140 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌) |
14 | 4 | nfel1 2913 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌 |
15 | 7 | eleq1d 2812 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑌 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
16 | 14, 15 | rspc 3594 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
17 | 13, 16 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌) |
18 | qlift.3 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
19 | qlift.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
20 | csbeq1 3891 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
21 | 11, 17, 18, 19, 20 | qliftfun 8798 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1531 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ⦋csb 3888 ⟨cop 4629 class class class wbr 5141 ↦ cmpt 5224 ran crn 5670 Fun wfun 6531 Er wer 8702 [cec 8703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-fv 6545 df-er 8705 df-ec 8707 df-qs 8711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |