MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftfuns Structured version   Visualization version   GIF version

Theorem qliftfuns 8823
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋𝑉)
Assertion
Ref Expression
qliftfuns (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem qliftfuns
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 nfcv 2899 . . . . 5 𝑦⟨[𝑥]𝑅, 𝐴
3 nfcv 2899 . . . . . 6 𝑥[𝑦]𝑅
4 nfcsb1v 3903 . . . . . 6 𝑥𝑦 / 𝑥𝐴
53, 4nfop 4870 . . . . 5 𝑥⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴
6 eceq1 8763 . . . . . 6 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
7 csbeq1a 3893 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
86, 7opeq12d 4862 . . . . 5 (𝑥 = 𝑦 → ⟨[𝑥]𝑅, 𝐴⟩ = ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
92, 5, 8cbvmpt 5228 . . . 4 (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
109rneqi 5922 . . 3 ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = ran (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
111, 10eqtri 2759 . 2 𝐹 = ran (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
12 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
1312ralrimiva 3133 . . 3 (𝜑 → ∀𝑥𝑋 𝐴𝑌)
144nfel1 2916 . . . 4 𝑥𝑦 / 𝑥𝐴𝑌
157eleq1d 2820 . . . 4 (𝑥 = 𝑦 → (𝐴𝑌𝑦 / 𝑥𝐴𝑌))
1614, 15rspc 3594 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐴𝑌𝑦 / 𝑥𝐴𝑌))
1713, 16mpan9 506 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴𝑌)
18 qlift.3 . 2 (𝜑𝑅 Er 𝑋)
19 qlift.4 . 2 (𝜑𝑋𝑉)
20 csbeq1 3882 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
2111, 17, 18, 19, 20qliftfun 8821 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3052  csb 3879  cop 4612   class class class wbr 5124  cmpt 5206  ran crn 5660  Fun wfun 6530   Er wer 8721  [cec 8722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-er 8724  df-ec 8726  df-qs 8730
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator