| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qliftfuns | Structured version Visualization version GIF version | ||
| Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.) (Revised by AV, 3-Aug-2024.) |
| Ref | Expression |
|---|---|
| qlift.1 | ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) |
| qlift.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) |
| qlift.3 | ⊢ (𝜑 → 𝑅 Er 𝑋) |
| qlift.4 | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| qliftfuns | ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qlift.1 | . . 3 ⊢ 𝐹 = ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) | |
| 2 | nfcv 2899 | . . . . 5 ⊢ Ⅎ𝑦〈[𝑥]𝑅, 𝐴〉 | |
| 3 | nfcv 2899 | . . . . . 6 ⊢ Ⅎ𝑥[𝑦]𝑅 | |
| 4 | nfcsb1v 3903 | . . . . . 6 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 | |
| 5 | 3, 4 | nfop 4870 | . . . . 5 ⊢ Ⅎ𝑥〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉 |
| 6 | eceq1 8763 | . . . . . 6 ⊢ (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅) | |
| 7 | csbeq1a 3893 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = ⦋𝑦 / 𝑥⦌𝐴) | |
| 8 | 6, 7 | opeq12d 4862 | . . . . 5 ⊢ (𝑥 = 𝑦 → 〈[𝑥]𝑅, 𝐴〉 = 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
| 9 | 2, 5, 8 | cbvmpt 5228 | . . . 4 ⊢ (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) = (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
| 10 | 9 | rneqi 5922 | . . 3 ⊢ ran (𝑥 ∈ 𝑋 ↦ 〈[𝑥]𝑅, 𝐴〉) = ran (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
| 11 | 1, 10 | eqtri 2759 | . 2 ⊢ 𝐹 = ran (𝑦 ∈ 𝑋 ↦ 〈[𝑦]𝑅, ⦋𝑦 / 𝑥⦌𝐴〉) |
| 12 | qlift.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ 𝑌) | |
| 13 | 12 | ralrimiva 3133 | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌) |
| 14 | 4 | nfel1 2916 | . . . 4 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌 |
| 15 | 7 | eleq1d 2820 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝐴 ∈ 𝑌 ↔ ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
| 16 | 14, 15 | rspc 3594 | . . 3 ⊢ (𝑦 ∈ 𝑋 → (∀𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌)) |
| 17 | 13, 16 | mpan9 506 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝑋) → ⦋𝑦 / 𝑥⦌𝐴 ∈ 𝑌) |
| 18 | qlift.3 | . 2 ⊢ (𝜑 → 𝑅 Er 𝑋) | |
| 19 | qlift.4 | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 20 | csbeq1 3882 | . 2 ⊢ (𝑦 = 𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | |
| 21 | 11, 17, 18, 19, 20 | qliftfun 8821 | 1 ⊢ (𝜑 → (Fun 𝐹 ↔ ∀𝑦∀𝑧(𝑦𝑅𝑧 → ⦋𝑦 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⦋csb 3879 〈cop 4612 class class class wbr 5124 ↦ cmpt 5206 ran crn 5660 Fun wfun 6530 Er wer 8721 [cec 8722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-er 8724 df-ec 8726 df-qs 8730 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |