MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qliftfuns Structured version   Visualization version   GIF version

Theorem qliftfuns 8367
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftfuns (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftfuns
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 nfcv 2955 . . . . 5 𝑦⟨[𝑥]𝑅, 𝐴
3 nfcv 2955 . . . . . 6 𝑥[𝑦]𝑅
4 nfcsb1v 3852 . . . . . 6 𝑥𝑦 / 𝑥𝐴
53, 4nfop 4781 . . . . 5 𝑥⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴
6 eceq1 8310 . . . . . 6 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
7 csbeq1a 3842 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
86, 7opeq12d 4773 . . . . 5 (𝑥 = 𝑦 → ⟨[𝑥]𝑅, 𝐴⟩ = ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
92, 5, 8cbvmpt 5131 . . . 4 (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
109rneqi 5771 . . 3 ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = ran (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
111, 10eqtri 2821 . 2 𝐹 = ran (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
12 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
1312ralrimiva 3149 . . 3 (𝜑 → ∀𝑥𝑋 𝐴𝑌)
144nfel1 2971 . . . 4 𝑥𝑦 / 𝑥𝐴𝑌
157eleq1d 2874 . . . 4 (𝑥 = 𝑦 → (𝐴𝑌𝑦 / 𝑥𝐴𝑌))
1614, 15rspc 3559 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐴𝑌𝑦 / 𝑥𝐴𝑌))
1713, 16mpan9 510 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴𝑌)
18 qlift.3 . 2 (𝜑𝑅 Er 𝑋)
19 qlift.4 . 2 (𝜑𝑋 ∈ V)
20 csbeq1 3831 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
2111, 17, 18, 19, 20qliftfun 8365 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  csb 3828  cop 4531   class class class wbr 5030  cmpt 5110  ran crn 5520  Fun wfun 6318   Er wer 8269  [cec 8270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-er 8272  df-ec 8274  df-qs 8278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator