| Step | Hyp | Ref
| Expression |
| 1 | | df-ov 7434 |
. 2
⊢ (𝑅𝑂𝑆) = (𝑂‘〈𝑅, 𝑆〉) |
| 2 | | flfcnp2.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 3 | | flfcnp2.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ (TopOn‘𝑌)) |
| 4 | | txtopon 23599 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 5 | 2, 3, 4 | syl2anc 584 |
. . . 4
⊢ (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌))) |
| 6 | | flfcnp2.l |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (Fil‘𝑍)) |
| 7 | | flfcnp2.a |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐴 ∈ 𝑋) |
| 8 | | flfcnp2.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝐵 ∈ 𝑌) |
| 9 | 7, 8 | opelxpd 5724 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑌)) |
| 10 | 9 | fmpttd 7135 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉):𝑍⟶(𝑋 × 𝑌)) |
| 11 | | flfcnp2.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ ((𝐽 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐴))) |
| 12 | | flfcnp2.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ ((𝐾 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐵))) |
| 13 | 7 | fmpttd 7135 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐴):𝑍⟶𝑋) |
| 14 | 8 | fmpttd 7135 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 𝐵):𝑍⟶𝑌) |
| 15 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑦〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉 |
| 16 | | nffvmpt1 6917 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦) |
| 17 | | nffvmpt1 6917 |
. . . . . . . . 9
⊢
Ⅎ𝑥((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦) |
| 18 | 16, 17 | nfop 4889 |
. . . . . . . 8
⊢
Ⅎ𝑥〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦)〉 |
| 19 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦)) |
| 20 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥) = ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦)) |
| 21 | 19, 20 | opeq12d 4881 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉 = 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦)〉) |
| 22 | 15, 18, 21 | cbvmpt 5253 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉) = (𝑦 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑦), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑦)〉) |
| 23 | 2, 3, 6, 13, 14, 22 | txflf 24014 |
. . . . . 6
⊢ (𝜑 → (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉)) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐴)) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 𝐵))))) |
| 24 | 11, 12, 23 | mpbir2and 713 |
. . . . 5
⊢ (𝜑 → 〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉))) |
| 25 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 𝑥 ∈ 𝑍) |
| 26 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑍 ↦ 𝐴) = (𝑥 ∈ 𝑍 ↦ 𝐴) |
| 27 | 26 | fvmpt2 7027 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = 𝐴) |
| 28 | 25, 7, 27 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥) = 𝐴) |
| 29 | | eqid 2737 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑍 ↦ 𝐵) = (𝑥 ∈ 𝑍 ↦ 𝐵) |
| 30 | 29 | fvmpt2 7027 |
. . . . . . . . 9
⊢ ((𝑥 ∈ 𝑍 ∧ 𝐵 ∈ 𝑌) → ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥) = 𝐵) |
| 31 | 25, 8, 30 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥) = 𝐵) |
| 32 | 28, 31 | opeq12d 4881 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉 = 〈𝐴, 𝐵〉) |
| 33 | 32 | mpteq2dva 5242 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉) = (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)) |
| 34 | 33 | fveq2d 6910 |
. . . . 5
⊢ (𝜑 → (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈((𝑥 ∈ 𝑍 ↦ 𝐴)‘𝑥), ((𝑥 ∈ 𝑍 ↦ 𝐵)‘𝑥)〉)) = (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉))) |
| 35 | 24, 34 | eleqtrd 2843 |
. . . 4
⊢ (𝜑 → 〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉))) |
| 36 | | flfcnp2.o |
. . . 4
⊢ (𝜑 → 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉)) |
| 37 | | flfcnp 24012 |
. . . 4
⊢ ((((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉):𝑍⟶(𝑋 × 𝑌)) ∧ (〈𝑅, 𝑆〉 ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)) ∧ 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉))) → (𝑂‘〈𝑅, 𝑆〉) ∈ ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)))) |
| 38 | 5, 6, 10, 35, 36, 37 | syl32anc 1380 |
. . 3
⊢ (𝜑 → (𝑂‘〈𝑅, 𝑆〉) ∈ ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)))) |
| 39 | | eqidd 2738 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉) = (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)) |
| 40 | | cnptop2 23251 |
. . . . . . . . 9
⊢ (𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉) → 𝑁 ∈ Top) |
| 41 | 36, 40 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ Top) |
| 42 | | toptopon2 22924 |
. . . . . . . 8
⊢ (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 43 | 41, 42 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ (TopOn‘∪ 𝑁)) |
| 44 | | cnpf2 23258 |
. . . . . . 7
⊢ (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘∪ 𝑁)
∧ 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘〈𝑅, 𝑆〉)) → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
| 45 | 5, 43, 36, 44 | syl3anc 1373 |
. . . . . 6
⊢ (𝜑 → 𝑂:(𝑋 × 𝑌)⟶∪ 𝑁) |
| 46 | 45 | feqmptd 6977 |
. . . . 5
⊢ (𝜑 → 𝑂 = (𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑂‘𝑦))) |
| 47 | | fveq2 6906 |
. . . . . 6
⊢ (𝑦 = 〈𝐴, 𝐵〉 → (𝑂‘𝑦) = (𝑂‘〈𝐴, 𝐵〉)) |
| 48 | | df-ov 7434 |
. . . . . 6
⊢ (𝐴𝑂𝐵) = (𝑂‘〈𝐴, 𝐵〉) |
| 49 | 47, 48 | eqtr4di 2795 |
. . . . 5
⊢ (𝑦 = 〈𝐴, 𝐵〉 → (𝑂‘𝑦) = (𝐴𝑂𝐵)) |
| 50 | 9, 39, 46, 49 | fmptco 7149 |
. . . 4
⊢ (𝜑 → (𝑂 ∘ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉)) = (𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵))) |
| 51 | 50 | fveq2d 6910 |
. . 3
⊢ (𝜑 → ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥 ∈ 𝑍 ↦ 〈𝐴, 𝐵〉))) = ((𝑁 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵)))) |
| 52 | 38, 51 | eleqtrd 2843 |
. 2
⊢ (𝜑 → (𝑂‘〈𝑅, 𝑆〉) ∈ ((𝑁 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵)))) |
| 53 | 1, 52 | eqeltrid 2845 |
1
⊢ (𝜑 → (𝑅𝑂𝑆) ∈ ((𝑁 fLimf 𝐿)‘(𝑥 ∈ 𝑍 ↦ (𝐴𝑂𝐵)))) |