MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcnp2 Structured version   Visualization version   GIF version

Theorem flfcnp2 23511
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
flfcnp2.j (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
flfcnp2.k (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
flfcnp2.l (πœ‘ β†’ 𝐿 ∈ (Filβ€˜π‘))
flfcnp2.a ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ 𝐴 ∈ 𝑋)
flfcnp2.b ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ 𝐡 ∈ π‘Œ)
flfcnp2.r (πœ‘ β†’ 𝑅 ∈ ((𝐽 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ 𝐴)))
flfcnp2.s (πœ‘ β†’ 𝑆 ∈ ((𝐾 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ 𝐡)))
flfcnp2.o (πœ‘ β†’ 𝑂 ∈ (((𝐽 Γ—t 𝐾) CnP 𝑁)β€˜βŸ¨π‘…, π‘†βŸ©))
Assertion
Ref Expression
flfcnp2 (πœ‘ β†’ (𝑅𝑂𝑆) ∈ ((𝑁 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ (𝐴𝑂𝐡))))
Distinct variable groups:   π‘₯,𝑂   πœ‘,π‘₯   π‘₯,𝑍   π‘₯,𝑋   π‘₯,π‘Œ
Allowed substitution hints:   𝐴(π‘₯)   𝐡(π‘₯)   𝑅(π‘₯)   𝑆(π‘₯)   𝐽(π‘₯)   𝐾(π‘₯)   𝐿(π‘₯)   𝑁(π‘₯)

Proof of Theorem flfcnp2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7412 . 2 (𝑅𝑂𝑆) = (π‘‚β€˜βŸ¨π‘…, π‘†βŸ©)
2 flfcnp2.j . . . . 5 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3 flfcnp2.k . . . . 5 (πœ‘ β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
4 txtopon 23095 . . . . 5 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ)) β†’ (𝐽 Γ—t 𝐾) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
52, 3, 4syl2anc 585 . . . 4 (πœ‘ β†’ (𝐽 Γ—t 𝐾) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)))
6 flfcnp2.l . . . 4 (πœ‘ β†’ 𝐿 ∈ (Filβ€˜π‘))
7 flfcnp2.a . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ 𝐴 ∈ 𝑋)
8 flfcnp2.b . . . . . 6 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ 𝐡 ∈ π‘Œ)
97, 8opelxpd 5716 . . . . 5 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ ⟨𝐴, 𝐡⟩ ∈ (𝑋 Γ— π‘Œ))
109fmpttd 7115 . . . 4 (πœ‘ β†’ (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩):π‘βŸΆ(𝑋 Γ— π‘Œ))
11 flfcnp2.r . . . . . 6 (πœ‘ β†’ 𝑅 ∈ ((𝐽 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ 𝐴)))
12 flfcnp2.s . . . . . 6 (πœ‘ β†’ 𝑆 ∈ ((𝐾 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ 𝐡)))
137fmpttd 7115 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝑍 ↦ 𝐴):π‘βŸΆπ‘‹)
148fmpttd 7115 . . . . . . 7 (πœ‘ β†’ (π‘₯ ∈ 𝑍 ↦ 𝐡):π‘βŸΆπ‘Œ)
15 nfcv 2904 . . . . . . . 8 β„²π‘¦βŸ¨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯)⟩
16 nffvmpt1 6903 . . . . . . . . 9 β„²π‘₯((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘¦)
17 nffvmpt1 6903 . . . . . . . . 9 β„²π‘₯((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘¦)
1816, 17nfop 4890 . . . . . . . 8 β„²π‘₯⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘¦), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘¦)⟩
19 fveq2 6892 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯) = ((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘¦))
20 fveq2 6892 . . . . . . . . 9 (π‘₯ = 𝑦 β†’ ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯) = ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘¦))
2119, 20opeq12d 4882 . . . . . . . 8 (π‘₯ = 𝑦 β†’ ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯)⟩ = ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘¦), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘¦)⟩)
2215, 18, 21cbvmpt 5260 . . . . . . 7 (π‘₯ ∈ 𝑍 ↦ ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯)⟩) = (𝑦 ∈ 𝑍 ↦ ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘¦), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘¦)⟩)
232, 3, 6, 13, 14, 22txflf 23510 . . . . . 6 (πœ‘ β†’ (βŸ¨π‘…, π‘†βŸ© ∈ (((𝐽 Γ—t 𝐾) fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯)⟩)) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ 𝐴)) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ 𝐡)))))
2411, 12, 23mpbir2and 712 . . . . 5 (πœ‘ β†’ βŸ¨π‘…, π‘†βŸ© ∈ (((𝐽 Γ—t 𝐾) fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯)⟩)))
25 simpr 486 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ π‘₯ ∈ 𝑍)
26 eqid 2733 . . . . . . . . . 10 (π‘₯ ∈ 𝑍 ↦ 𝐴) = (π‘₯ ∈ 𝑍 ↦ 𝐴)
2726fvmpt2 7010 . . . . . . . . 9 ((π‘₯ ∈ 𝑍 ∧ 𝐴 ∈ 𝑋) β†’ ((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯) = 𝐴)
2825, 7, 27syl2anc 585 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ ((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯) = 𝐴)
29 eqid 2733 . . . . . . . . . 10 (π‘₯ ∈ 𝑍 ↦ 𝐡) = (π‘₯ ∈ 𝑍 ↦ 𝐡)
3029fvmpt2 7010 . . . . . . . . 9 ((π‘₯ ∈ 𝑍 ∧ 𝐡 ∈ π‘Œ) β†’ ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯) = 𝐡)
3125, 8, 30syl2anc 585 . . . . . . . 8 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯) = 𝐡)
3228, 31opeq12d 4882 . . . . . . 7 ((πœ‘ ∧ π‘₯ ∈ 𝑍) β†’ ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯)⟩ = ⟨𝐴, 𝐡⟩)
3332mpteq2dva 5249 . . . . . 6 (πœ‘ β†’ (π‘₯ ∈ 𝑍 ↦ ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯)⟩) = (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩))
3433fveq2d 6896 . . . . 5 (πœ‘ β†’ (((𝐽 Γ—t 𝐾) fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ ⟨((π‘₯ ∈ 𝑍 ↦ 𝐴)β€˜π‘₯), ((π‘₯ ∈ 𝑍 ↦ 𝐡)β€˜π‘₯)⟩)) = (((𝐽 Γ—t 𝐾) fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩)))
3524, 34eleqtrd 2836 . . . 4 (πœ‘ β†’ βŸ¨π‘…, π‘†βŸ© ∈ (((𝐽 Γ—t 𝐾) fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩)))
36 flfcnp2.o . . . 4 (πœ‘ β†’ 𝑂 ∈ (((𝐽 Γ—t 𝐾) CnP 𝑁)β€˜βŸ¨π‘…, π‘†βŸ©))
37 flfcnp 23508 . . . 4 ((((𝐽 Γ—t 𝐾) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)) ∧ 𝐿 ∈ (Filβ€˜π‘) ∧ (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩):π‘βŸΆ(𝑋 Γ— π‘Œ)) ∧ (βŸ¨π‘…, π‘†βŸ© ∈ (((𝐽 Γ—t 𝐾) fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩)) ∧ 𝑂 ∈ (((𝐽 Γ—t 𝐾) CnP 𝑁)β€˜βŸ¨π‘…, π‘†βŸ©))) β†’ (π‘‚β€˜βŸ¨π‘…, π‘†βŸ©) ∈ ((𝑁 fLimf 𝐿)β€˜(𝑂 ∘ (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩))))
385, 6, 10, 35, 36, 37syl32anc 1379 . . 3 (πœ‘ β†’ (π‘‚β€˜βŸ¨π‘…, π‘†βŸ©) ∈ ((𝑁 fLimf 𝐿)β€˜(𝑂 ∘ (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩))))
39 eqidd 2734 . . . . 5 (πœ‘ β†’ (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩) = (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩))
40 cnptop2 22747 . . . . . . . . 9 (𝑂 ∈ (((𝐽 Γ—t 𝐾) CnP 𝑁)β€˜βŸ¨π‘…, π‘†βŸ©) β†’ 𝑁 ∈ Top)
4136, 40syl 17 . . . . . . . 8 (πœ‘ β†’ 𝑁 ∈ Top)
42 toptopon2 22420 . . . . . . . 8 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁))
4341, 42sylib 217 . . . . . . 7 (πœ‘ β†’ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁))
44 cnpf2 22754 . . . . . . 7 (((𝐽 Γ—t 𝐾) ∈ (TopOnβ€˜(𝑋 Γ— π‘Œ)) ∧ 𝑁 ∈ (TopOnβ€˜βˆͺ 𝑁) ∧ 𝑂 ∈ (((𝐽 Γ—t 𝐾) CnP 𝑁)β€˜βŸ¨π‘…, π‘†βŸ©)) β†’ 𝑂:(𝑋 Γ— π‘Œ)⟢βˆͺ 𝑁)
455, 43, 36, 44syl3anc 1372 . . . . . 6 (πœ‘ β†’ 𝑂:(𝑋 Γ— π‘Œ)⟢βˆͺ 𝑁)
4645feqmptd 6961 . . . . 5 (πœ‘ β†’ 𝑂 = (𝑦 ∈ (𝑋 Γ— π‘Œ) ↦ (π‘‚β€˜π‘¦)))
47 fveq2 6892 . . . . . 6 (𝑦 = ⟨𝐴, 𝐡⟩ β†’ (π‘‚β€˜π‘¦) = (π‘‚β€˜βŸ¨π΄, 𝐡⟩))
48 df-ov 7412 . . . . . 6 (𝐴𝑂𝐡) = (π‘‚β€˜βŸ¨π΄, 𝐡⟩)
4947, 48eqtr4di 2791 . . . . 5 (𝑦 = ⟨𝐴, 𝐡⟩ β†’ (π‘‚β€˜π‘¦) = (𝐴𝑂𝐡))
509, 39, 46, 49fmptco 7127 . . . 4 (πœ‘ β†’ (𝑂 ∘ (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩)) = (π‘₯ ∈ 𝑍 ↦ (𝐴𝑂𝐡)))
5150fveq2d 6896 . . 3 (πœ‘ β†’ ((𝑁 fLimf 𝐿)β€˜(𝑂 ∘ (π‘₯ ∈ 𝑍 ↦ ⟨𝐴, 𝐡⟩))) = ((𝑁 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ (𝐴𝑂𝐡))))
5238, 51eleqtrd 2836 . 2 (πœ‘ β†’ (π‘‚β€˜βŸ¨π‘…, π‘†βŸ©) ∈ ((𝑁 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ (𝐴𝑂𝐡))))
531, 52eqeltrid 2838 1 (πœ‘ β†’ (𝑅𝑂𝑆) ∈ ((𝑁 fLimf 𝐿)β€˜(π‘₯ ∈ 𝑍 ↦ (𝐴𝑂𝐡))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βŸ¨cop 4635  βˆͺ cuni 4909   ↦ cmpt 5232   Γ— cxp 5675   ∘ ccom 5681  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7409  Topctop 22395  TopOnctopon 22412   CnP ccnp 22729   Γ—t ctx 23064  Filcfil 23349   fLimf cflf 23439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-map 8822  df-topgen 17389  df-fbas 20941  df-fg 20942  df-top 22396  df-topon 22413  df-bases 22449  df-ntr 22524  df-nei 22602  df-cnp 22732  df-tx 23066  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444
This theorem is referenced by:  tsmsadd  23651
  Copyright terms: Public domain W3C validator