MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfcnp2 Structured version   Visualization version   GIF version

Theorem flfcnp2 23158
Description: The image of a convergent sequence under a continuous map is convergent to the image of the original point. Binary operation version. (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypotheses
Ref Expression
flfcnp2.j (𝜑𝐽 ∈ (TopOn‘𝑋))
flfcnp2.k (𝜑𝐾 ∈ (TopOn‘𝑌))
flfcnp2.l (𝜑𝐿 ∈ (Fil‘𝑍))
flfcnp2.a ((𝜑𝑥𝑍) → 𝐴𝑋)
flfcnp2.b ((𝜑𝑥𝑍) → 𝐵𝑌)
flfcnp2.r (𝜑𝑅 ∈ ((𝐽 fLimf 𝐿)‘(𝑥𝑍𝐴)))
flfcnp2.s (𝜑𝑆 ∈ ((𝐾 fLimf 𝐿)‘(𝑥𝑍𝐵)))
flfcnp2.o (𝜑𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘⟨𝑅, 𝑆⟩))
Assertion
Ref Expression
flfcnp2 (𝜑 → (𝑅𝑂𝑆) ∈ ((𝑁 fLimf 𝐿)‘(𝑥𝑍 ↦ (𝐴𝑂𝐵))))
Distinct variable groups:   𝑥,𝑂   𝜑,𝑥   𝑥,𝑍   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝐽(𝑥)   𝐾(𝑥)   𝐿(𝑥)   𝑁(𝑥)

Proof of Theorem flfcnp2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-ov 7278 . 2 (𝑅𝑂𝑆) = (𝑂‘⟨𝑅, 𝑆⟩)
2 flfcnp2.j . . . . 5 (𝜑𝐽 ∈ (TopOn‘𝑋))
3 flfcnp2.k . . . . 5 (𝜑𝐾 ∈ (TopOn‘𝑌))
4 txtopon 22742 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
52, 3, 4syl2anc 584 . . . 4 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
6 flfcnp2.l . . . 4 (𝜑𝐿 ∈ (Fil‘𝑍))
7 flfcnp2.a . . . . . 6 ((𝜑𝑥𝑍) → 𝐴𝑋)
8 flfcnp2.b . . . . . 6 ((𝜑𝑥𝑍) → 𝐵𝑌)
97, 8opelxpd 5627 . . . . 5 ((𝜑𝑥𝑍) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
109fmpttd 6989 . . . 4 (𝜑 → (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩):𝑍⟶(𝑋 × 𝑌))
11 flfcnp2.r . . . . . 6 (𝜑𝑅 ∈ ((𝐽 fLimf 𝐿)‘(𝑥𝑍𝐴)))
12 flfcnp2.s . . . . . 6 (𝜑𝑆 ∈ ((𝐾 fLimf 𝐿)‘(𝑥𝑍𝐵)))
137fmpttd 6989 . . . . . . 7 (𝜑 → (𝑥𝑍𝐴):𝑍𝑋)
148fmpttd 6989 . . . . . . 7 (𝜑 → (𝑥𝑍𝐵):𝑍𝑌)
15 nfcv 2907 . . . . . . . 8 𝑦⟨((𝑥𝑍𝐴)‘𝑥), ((𝑥𝑍𝐵)‘𝑥)⟩
16 nffvmpt1 6785 . . . . . . . . 9 𝑥((𝑥𝑍𝐴)‘𝑦)
17 nffvmpt1 6785 . . . . . . . . 9 𝑥((𝑥𝑍𝐵)‘𝑦)
1816, 17nfop 4820 . . . . . . . 8 𝑥⟨((𝑥𝑍𝐴)‘𝑦), ((𝑥𝑍𝐵)‘𝑦)⟩
19 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥𝑍𝐴)‘𝑥) = ((𝑥𝑍𝐴)‘𝑦))
20 fveq2 6774 . . . . . . . . 9 (𝑥 = 𝑦 → ((𝑥𝑍𝐵)‘𝑥) = ((𝑥𝑍𝐵)‘𝑦))
2119, 20opeq12d 4812 . . . . . . . 8 (𝑥 = 𝑦 → ⟨((𝑥𝑍𝐴)‘𝑥), ((𝑥𝑍𝐵)‘𝑥)⟩ = ⟨((𝑥𝑍𝐴)‘𝑦), ((𝑥𝑍𝐵)‘𝑦)⟩)
2215, 18, 21cbvmpt 5185 . . . . . . 7 (𝑥𝑍 ↦ ⟨((𝑥𝑍𝐴)‘𝑥), ((𝑥𝑍𝐵)‘𝑥)⟩) = (𝑦𝑍 ↦ ⟨((𝑥𝑍𝐴)‘𝑦), ((𝑥𝑍𝐵)‘𝑦)⟩)
232, 3, 6, 13, 14, 22txflf 23157 . . . . . 6 (𝜑 → (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥𝑍 ↦ ⟨((𝑥𝑍𝐴)‘𝑥), ((𝑥𝑍𝐵)‘𝑥)⟩)) ↔ (𝑅 ∈ ((𝐽 fLimf 𝐿)‘(𝑥𝑍𝐴)) ∧ 𝑆 ∈ ((𝐾 fLimf 𝐿)‘(𝑥𝑍𝐵)))))
2411, 12, 23mpbir2and 710 . . . . 5 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥𝑍 ↦ ⟨((𝑥𝑍𝐴)‘𝑥), ((𝑥𝑍𝐵)‘𝑥)⟩)))
25 simpr 485 . . . . . . . . 9 ((𝜑𝑥𝑍) → 𝑥𝑍)
26 eqid 2738 . . . . . . . . . 10 (𝑥𝑍𝐴) = (𝑥𝑍𝐴)
2726fvmpt2 6886 . . . . . . . . 9 ((𝑥𝑍𝐴𝑋) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
2825, 7, 27syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑍) → ((𝑥𝑍𝐴)‘𝑥) = 𝐴)
29 eqid 2738 . . . . . . . . . 10 (𝑥𝑍𝐵) = (𝑥𝑍𝐵)
3029fvmpt2 6886 . . . . . . . . 9 ((𝑥𝑍𝐵𝑌) → ((𝑥𝑍𝐵)‘𝑥) = 𝐵)
3125, 8, 30syl2anc 584 . . . . . . . 8 ((𝜑𝑥𝑍) → ((𝑥𝑍𝐵)‘𝑥) = 𝐵)
3228, 31opeq12d 4812 . . . . . . 7 ((𝜑𝑥𝑍) → ⟨((𝑥𝑍𝐴)‘𝑥), ((𝑥𝑍𝐵)‘𝑥)⟩ = ⟨𝐴, 𝐵⟩)
3332mpteq2dva 5174 . . . . . 6 (𝜑 → (𝑥𝑍 ↦ ⟨((𝑥𝑍𝐴)‘𝑥), ((𝑥𝑍𝐵)‘𝑥)⟩) = (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩))
3433fveq2d 6778 . . . . 5 (𝜑 → (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥𝑍 ↦ ⟨((𝑥𝑍𝐴)‘𝑥), ((𝑥𝑍𝐵)‘𝑥)⟩)) = (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩)))
3524, 34eleqtrd 2841 . . . 4 (𝜑 → ⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩)))
36 flfcnp2.o . . . 4 (𝜑𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘⟨𝑅, 𝑆⟩))
37 flfcnp 23155 . . . 4 ((((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝐿 ∈ (Fil‘𝑍) ∧ (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩):𝑍⟶(𝑋 × 𝑌)) ∧ (⟨𝑅, 𝑆⟩ ∈ (((𝐽 ×t 𝐾) fLimf 𝐿)‘(𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩)) ∧ 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘⟨𝑅, 𝑆⟩))) → (𝑂‘⟨𝑅, 𝑆⟩) ∈ ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩))))
385, 6, 10, 35, 36, 37syl32anc 1377 . . 3 (𝜑 → (𝑂‘⟨𝑅, 𝑆⟩) ∈ ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩))))
39 eqidd 2739 . . . . 5 (𝜑 → (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩) = (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩))
40 cnptop2 22394 . . . . . . . . 9 (𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘⟨𝑅, 𝑆⟩) → 𝑁 ∈ Top)
4136, 40syl 17 . . . . . . . 8 (𝜑𝑁 ∈ Top)
42 toptopon2 22067 . . . . . . . 8 (𝑁 ∈ Top ↔ 𝑁 ∈ (TopOn‘ 𝑁))
4341, 42sylib 217 . . . . . . 7 (𝜑𝑁 ∈ (TopOn‘ 𝑁))
44 cnpf2 22401 . . . . . . 7 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ 𝑁 ∈ (TopOn‘ 𝑁) ∧ 𝑂 ∈ (((𝐽 ×t 𝐾) CnP 𝑁)‘⟨𝑅, 𝑆⟩)) → 𝑂:(𝑋 × 𝑌)⟶ 𝑁)
455, 43, 36, 44syl3anc 1370 . . . . . 6 (𝜑𝑂:(𝑋 × 𝑌)⟶ 𝑁)
4645feqmptd 6837 . . . . 5 (𝜑𝑂 = (𝑦 ∈ (𝑋 × 𝑌) ↦ (𝑂𝑦)))
47 fveq2 6774 . . . . . 6 (𝑦 = ⟨𝐴, 𝐵⟩ → (𝑂𝑦) = (𝑂‘⟨𝐴, 𝐵⟩))
48 df-ov 7278 . . . . . 6 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
4947, 48eqtr4di 2796 . . . . 5 (𝑦 = ⟨𝐴, 𝐵⟩ → (𝑂𝑦) = (𝐴𝑂𝐵))
509, 39, 46, 49fmptco 7001 . . . 4 (𝜑 → (𝑂 ∘ (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩)) = (𝑥𝑍 ↦ (𝐴𝑂𝐵)))
5150fveq2d 6778 . . 3 (𝜑 → ((𝑁 fLimf 𝐿)‘(𝑂 ∘ (𝑥𝑍 ↦ ⟨𝐴, 𝐵⟩))) = ((𝑁 fLimf 𝐿)‘(𝑥𝑍 ↦ (𝐴𝑂𝐵))))
5238, 51eleqtrd 2841 . 2 (𝜑 → (𝑂‘⟨𝑅, 𝑆⟩) ∈ ((𝑁 fLimf 𝐿)‘(𝑥𝑍 ↦ (𝐴𝑂𝐵))))
531, 52eqeltrid 2843 1 (𝜑 → (𝑅𝑂𝑆) ∈ ((𝑁 fLimf 𝐿)‘(𝑥𝑍 ↦ (𝐴𝑂𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567   cuni 4839  cmpt 5157   × cxp 5587  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  Topctop 22042  TopOnctopon 22059   CnP ccnp 22376   ×t ctx 22711  Filcfil 22996   fLimf cflf 23086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-topgen 17154  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-bases 22096  df-ntr 22171  df-nei 22249  df-cnp 22379  df-tx 22713  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091
This theorem is referenced by:  tsmsadd  23298
  Copyright terms: Public domain W3C validator