| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgsucmptf | Structured version Visualization version GIF version | ||
| Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| rdgsucmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| rdgsucmptf.2 | ⊢ Ⅎ𝑥𝐵 |
| rdgsucmptf.3 | ⊢ Ⅎ𝑥𝐷 |
| rdgsucmptf.4 | ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| rdgsucmptf.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rdgsucmptf | ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsuc 8438 | . . 3 ⊢ (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))) | |
| 2 | rdgsucmptf.4 | . . . 4 ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
| 3 | 2 | fveq1i 6877 | . . 3 ⊢ (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) |
| 4 | 2 | fveq1i 6877 | . . . 4 ⊢ (𝐹‘𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵) |
| 5 | 4 | fveq2i 6879 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)) |
| 6 | 1, 3, 5 | 3eqtr4g 2795 | . 2 ⊢ (𝐵 ∈ On → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
| 7 | fvex 6889 | . . 3 ⊢ (𝐹‘𝐵) ∈ V | |
| 8 | nfmpt1 5220 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
| 9 | rdgsucmptf.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 10 | 8, 9 | nfrdg 8428 | . . . . . 6 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| 11 | 2, 10 | nfcxfr 2896 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
| 12 | rdgsucmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 13 | 11, 12 | nffv 6886 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
| 14 | rdgsucmptf.3 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
| 15 | rdgsucmptf.5 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 16 | eqid 2735 | . . . 4 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 17 | 13, 14, 15, 16 | fvmptf 7007 | . . 3 ⊢ (((𝐹‘𝐵) ∈ V ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
| 18 | 7, 17 | mpan 690 | . 2 ⊢ (𝐷 ∈ 𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
| 19 | 6, 18 | sylan9eq 2790 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Ⅎwnfc 2883 Vcvv 3459 ↦ cmpt 5201 Oncon0 6352 suc csuc 6354 ‘cfv 6531 reccrdg 8423 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 |
| This theorem is referenced by: rdgsucmpt2 8444 rdgsucmpt 8445 ttrclselem1 9739 ttrclselem2 9740 rdgssun 37396 exrecfnlem 37397 |
| Copyright terms: Public domain | W3C validator |