| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgsucmptf | Structured version Visualization version GIF version | ||
| Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| rdgsucmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| rdgsucmptf.2 | ⊢ Ⅎ𝑥𝐵 |
| rdgsucmptf.3 | ⊢ Ⅎ𝑥𝐷 |
| rdgsucmptf.4 | ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| rdgsucmptf.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rdgsucmptf | ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsuc 8432 | . . 3 ⊢ (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))) | |
| 2 | rdgsucmptf.4 | . . . 4 ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
| 3 | 2 | fveq1i 6873 | . . 3 ⊢ (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) |
| 4 | 2 | fveq1i 6873 | . . . 4 ⊢ (𝐹‘𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵) |
| 5 | 4 | fveq2i 6875 | . . 3 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)) |
| 6 | 1, 3, 5 | 3eqtr4g 2794 | . 2 ⊢ (𝐵 ∈ On → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
| 7 | fvex 6885 | . . 3 ⊢ (𝐹‘𝐵) ∈ V | |
| 8 | nfmpt1 5217 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
| 9 | rdgsucmptf.1 | . . . . . . 7 ⊢ Ⅎ𝑥𝐴 | |
| 10 | 8, 9 | nfrdg 8422 | . . . . . 6 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| 11 | 2, 10 | nfcxfr 2895 | . . . . 5 ⊢ Ⅎ𝑥𝐹 |
| 12 | rdgsucmptf.2 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
| 13 | 11, 12 | nffv 6882 | . . . 4 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
| 14 | rdgsucmptf.3 | . . . 4 ⊢ Ⅎ𝑥𝐷 | |
| 15 | rdgsucmptf.5 | . . . 4 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 16 | eqid 2734 | . . . 4 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 17 | 13, 14, 15, 16 | fvmptf 7003 | . . 3 ⊢ (((𝐹‘𝐵) ∈ V ∧ 𝐷 ∈ 𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
| 18 | 7, 17 | mpan 690 | . 2 ⊢ (𝐷 ∈ 𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = 𝐷) |
| 19 | 6, 18 | sylan9eq 2789 | 1 ⊢ ((𝐵 ∈ On ∧ 𝐷 ∈ 𝑉) → (𝐹‘suc 𝐵) = 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Ⅎwnfc 2882 Vcvv 3457 ↦ cmpt 5198 Oncon0 6349 suc csuc 6351 ‘cfv 6527 reccrdg 8417 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5246 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 |
| This theorem is referenced by: rdgsucmpt2 8438 rdgsucmpt 8439 ttrclselem1 9731 ttrclselem2 9732 rdgssun 37317 exrecfnlem 37318 |
| Copyright terms: Public domain | W3C validator |