MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmptf Structured version   Visualization version   GIF version

Theorem rdgsucmptf 8259
Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
rdgsucmptf.1 𝑥𝐴
rdgsucmptf.2 𝑥𝐵
rdgsucmptf.3 𝑥𝐷
rdgsucmptf.4 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
rdgsucmptf.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
rdgsucmptf ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)

Proof of Theorem rdgsucmptf
StepHypRef Expression
1 rdgsuc 8255 . . 3 (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)))
2 rdgsucmptf.4 . . . 4 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
32fveq1i 6775 . . 3 (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵)
42fveq1i 6775 . . . 4 (𝐹𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)
54fveq2i 6777 . . 3 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))
61, 3, 53eqtr4g 2803 . 2 (𝐵 ∈ On → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
7 fvex 6787 . . 3 (𝐹𝐵) ∈ V
8 nfmpt1 5182 . . . . . . 7 𝑥(𝑥 ∈ V ↦ 𝐶)
9 rdgsucmptf.1 . . . . . . 7 𝑥𝐴
108, 9nfrdg 8245 . . . . . 6 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
112, 10nfcxfr 2905 . . . . 5 𝑥𝐹
12 rdgsucmptf.2 . . . . 5 𝑥𝐵
1311, 12nffv 6784 . . . 4 𝑥(𝐹𝐵)
14 rdgsucmptf.3 . . . 4 𝑥𝐷
15 rdgsucmptf.5 . . . 4 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
16 eqid 2738 . . . 4 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
1713, 14, 15, 16fvmptf 6896 . . 3 (((𝐹𝐵) ∈ V ∧ 𝐷𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
187, 17mpan 687 . 2 (𝐷𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
196, 18sylan9eq 2798 1 ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wnfc 2887  Vcvv 3432  cmpt 5157  Oncon0 6266  suc csuc 6268  cfv 6433  reccrdg 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by:  rdgsucmpt2  8261  rdgsucmpt  8262  ttrclselem1  9483  ttrclselem2  9484  rdgssun  35549  exrecfnlem  35550
  Copyright terms: Public domain W3C validator