MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmptf Structured version   Visualization version   GIF version

Theorem rdgsucmptf 8427
Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
rdgsucmptf.1 𝑥𝐴
rdgsucmptf.2 𝑥𝐵
rdgsucmptf.3 𝑥𝐷
rdgsucmptf.4 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
rdgsucmptf.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
rdgsucmptf ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)

Proof of Theorem rdgsucmptf
StepHypRef Expression
1 rdgsuc 8423 . . 3 (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)))
2 rdgsucmptf.4 . . . 4 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
32fveq1i 6892 . . 3 (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵)
42fveq1i 6892 . . . 4 (𝐹𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)
54fveq2i 6894 . . 3 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))
61, 3, 53eqtr4g 2797 . 2 (𝐵 ∈ On → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
7 fvex 6904 . . 3 (𝐹𝐵) ∈ V
8 nfmpt1 5256 . . . . . . 7 𝑥(𝑥 ∈ V ↦ 𝐶)
9 rdgsucmptf.1 . . . . . . 7 𝑥𝐴
108, 9nfrdg 8413 . . . . . 6 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
112, 10nfcxfr 2901 . . . . 5 𝑥𝐹
12 rdgsucmptf.2 . . . . 5 𝑥𝐵
1311, 12nffv 6901 . . . 4 𝑥(𝐹𝐵)
14 rdgsucmptf.3 . . . 4 𝑥𝐷
15 rdgsucmptf.5 . . . 4 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
16 eqid 2732 . . . 4 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
1713, 14, 15, 16fvmptf 7019 . . 3 (((𝐹𝐵) ∈ V ∧ 𝐷𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
187, 17mpan 688 . 2 (𝐷𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
196, 18sylan9eq 2792 1 ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wnfc 2883  Vcvv 3474  cmpt 5231  Oncon0 6364  suc csuc 6366  cfv 6543  reccrdg 8408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409
This theorem is referenced by:  rdgsucmpt2  8429  rdgsucmpt  8430  ttrclselem1  9719  ttrclselem2  9720  rdgssun  36254  exrecfnlem  36255
  Copyright terms: Public domain W3C validator