MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmptf Structured version   Visualization version   GIF version

Theorem rdgsucmptf 8447
Description: The value of the recursive definition generator at a successor (special case where the characteristic function uses the map operation). (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
rdgsucmptf.1 𝑥𝐴
rdgsucmptf.2 𝑥𝐵
rdgsucmptf.3 𝑥𝐷
rdgsucmptf.4 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
rdgsucmptf.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
rdgsucmptf ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)

Proof of Theorem rdgsucmptf
StepHypRef Expression
1 rdgsuc 8443 . . 3 (𝐵 ∈ On → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)))
2 rdgsucmptf.4 . . . 4 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
32fveq1i 6893 . . 3 (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵)
42fveq1i 6893 . . . 4 (𝐹𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)
54fveq2i 6895 . . 3 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))
61, 3, 53eqtr4g 2790 . 2 (𝐵 ∈ On → (𝐹‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
7 fvex 6905 . . 3 (𝐹𝐵) ∈ V
8 nfmpt1 5251 . . . . . . 7 𝑥(𝑥 ∈ V ↦ 𝐶)
9 rdgsucmptf.1 . . . . . . 7 𝑥𝐴
108, 9nfrdg 8433 . . . . . 6 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
112, 10nfcxfr 2890 . . . . 5 𝑥𝐹
12 rdgsucmptf.2 . . . . 5 𝑥𝐵
1311, 12nffv 6902 . . . 4 𝑥(𝐹𝐵)
14 rdgsucmptf.3 . . . 4 𝑥𝐷
15 rdgsucmptf.5 . . . 4 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
16 eqid 2725 . . . 4 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
1713, 14, 15, 16fvmptf 7021 . . 3 (((𝐹𝐵) ∈ V ∧ 𝐷𝑉) → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
187, 17mpan 688 . 2 (𝐷𝑉 → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = 𝐷)
196, 18sylan9eq 2785 1 ((𝐵 ∈ On ∧ 𝐷𝑉) → (𝐹‘suc 𝐵) = 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  wnfc 2875  Vcvv 3463  cmpt 5226  Oncon0 6364  suc csuc 6366  cfv 6543  reccrdg 8428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-pss 3959  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7419  df-2nd 7992  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429
This theorem is referenced by:  rdgsucmpt2  8449  rdgsucmpt  8450  ttrclselem1  9748  ttrclselem2  9749  rdgssun  36914  exrecfnlem  36915
  Copyright terms: Public domain W3C validator