Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rdgsucmptnf | Structured version Visualization version GIF version |
Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with rdgsucmptf 8230 to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
rdgsucmptf.1 | ⊢ Ⅎ𝑥𝐴 |
rdgsucmptf.2 | ⊢ Ⅎ𝑥𝐵 |
rdgsucmptf.3 | ⊢ Ⅎ𝑥𝐷 |
rdgsucmptf.4 | ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
rdgsucmptf.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
rdgsucmptnf | ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgsucmptf.4 | . . 3 ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
2 | 1 | fveq1i 6757 | . 2 ⊢ (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) |
3 | rdgdmlim 8219 | . . . . 5 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
4 | limsuc 7671 | . . . . 5 ⊢ (Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴))) | |
5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) |
6 | rdgsucg 8225 | . . . . . . 7 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))) | |
7 | 1 | fveq1i 6757 | . . . . . . . 8 ⊢ (𝐹‘𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵) |
8 | 7 | fveq2i 6759 | . . . . . . 7 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)) |
9 | 6, 8 | eqtr4di 2797 | . . . . . 6 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
10 | nfmpt1 5178 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
11 | rdgsucmptf.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝐴 | |
12 | 10, 11 | nfrdg 8216 | . . . . . . . . 9 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
13 | 1, 12 | nfcxfr 2904 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 |
14 | rdgsucmptf.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐵 | |
15 | 13, 14 | nffv 6766 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
16 | rdgsucmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝐷 | |
17 | rdgsucmptf.5 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
18 | eqid 2738 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
19 | 15, 16, 17, 18 | fvmptnf 6879 | . . . . . 6 ⊢ (¬ 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ∅) |
20 | 9, 19 | sylan9eqr 2801 | . . . . 5 ⊢ ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) |
21 | 20 | ex 412 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)) |
22 | 5, 21 | syl5bir 242 | . . 3 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)) |
23 | ndmfv 6786 | . . 3 ⊢ (¬ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) | |
24 | 22, 23 | pm2.61d1 180 | . 2 ⊢ (¬ 𝐷 ∈ V → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) |
25 | 2, 24 | eqtrid 2790 | 1 ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Ⅎwnfc 2886 Vcvv 3422 ∅c0 4253 ↦ cmpt 5153 dom cdm 5580 Lim wlim 6252 suc csuc 6253 ‘cfv 6418 reccrdg 8211 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 |
This theorem is referenced by: ttrclselem1 33711 |
Copyright terms: Public domain | W3C validator |