MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmptnf Structured version   Visualization version   GIF version

Theorem rdgsucmptnf 8429
Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with rdgsucmptf 8428 to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
rdgsucmptf.1 𝑥𝐴
rdgsucmptf.2 𝑥𝐵
rdgsucmptf.3 𝑥𝐷
rdgsucmptf.4 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
rdgsucmptf.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
rdgsucmptnf 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)

Proof of Theorem rdgsucmptnf
StepHypRef Expression
1 rdgsucmptf.4 . . 3 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
21fveq1i 6893 . 2 (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵)
3 rdgdmlim 8417 . . . . 5 Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
4 limsuc 7838 . . . . 5 (Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)))
53, 4ax-mp 5 . . . 4 (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴))
6 rdgsucg 8423 . . . . . . 7 (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)))
71fveq1i 6893 . . . . . . . 8 (𝐹𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)
87fveq2i 6895 . . . . . . 7 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))
96, 8eqtr4di 2791 . . . . . 6 (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
10 nfmpt1 5257 . . . . . . . . . 10 𝑥(𝑥 ∈ V ↦ 𝐶)
11 rdgsucmptf.1 . . . . . . . . . 10 𝑥𝐴
1210, 11nfrdg 8414 . . . . . . . . 9 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
131, 12nfcxfr 2902 . . . . . . . 8 𝑥𝐹
14 rdgsucmptf.2 . . . . . . . 8 𝑥𝐵
1513, 14nffv 6902 . . . . . . 7 𝑥(𝐹𝐵)
16 rdgsucmptf.3 . . . . . . 7 𝑥𝐷
17 rdgsucmptf.5 . . . . . . 7 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
18 eqid 2733 . . . . . . 7 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
1915, 16, 17, 18fvmptnf 7021 . . . . . 6 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ∅)
209, 19sylan9eqr 2795 . . . . 5 ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)
2120ex 414 . . . 4 𝐷 ∈ V → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅))
225, 21biimtrrid 242 . . 3 𝐷 ∈ V → (suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅))
23 ndmfv 6927 . . 3 (¬ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)
2422, 23pm2.61d1 180 . 2 𝐷 ∈ V → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)
252, 24eqtrid 2785 1 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1542  wcel 2107  wnfc 2884  Vcvv 3475  c0 4323  cmpt 5232  dom cdm 5677  Lim wlim 6366  suc csuc 6367  cfv 6544  reccrdg 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410
This theorem is referenced by:  ttrclselem1  9720
  Copyright terms: Public domain W3C validator