MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rdgsucmptnf Structured version   Visualization version   GIF version

Theorem rdgsucmptnf 8357
Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with rdgsucmptf 8356 to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
rdgsucmptf.1 𝑥𝐴
rdgsucmptf.2 𝑥𝐵
rdgsucmptf.3 𝑥𝐷
rdgsucmptf.4 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
rdgsucmptf.5 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
Assertion
Ref Expression
rdgsucmptnf 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)

Proof of Theorem rdgsucmptnf
StepHypRef Expression
1 rdgsucmptf.4 . . 3 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
21fveq1i 6832 . 2 (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵)
3 rdgdmlim 8345 . . . . 5 Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
4 limsuc 7788 . . . . 5 (Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)))
53, 4ax-mp 5 . . . 4 (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴))
6 rdgsucg 8351 . . . . . . 7 (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)))
71fveq1i 6832 . . . . . . . 8 (𝐹𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)
87fveq2i 6834 . . . . . . 7 ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))
96, 8eqtr4di 2786 . . . . . 6 (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)))
10 nfmpt1 5194 . . . . . . . . . 10 𝑥(𝑥 ∈ V ↦ 𝐶)
11 rdgsucmptf.1 . . . . . . . . . 10 𝑥𝐴
1210, 11nfrdg 8342 . . . . . . . . 9 𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴)
131, 12nfcxfr 2893 . . . . . . . 8 𝑥𝐹
14 rdgsucmptf.2 . . . . . . . 8 𝑥𝐵
1513, 14nffv 6841 . . . . . . 7 𝑥(𝐹𝐵)
16 rdgsucmptf.3 . . . . . . 7 𝑥𝐷
17 rdgsucmptf.5 . . . . . . 7 (𝑥 = (𝐹𝐵) → 𝐶 = 𝐷)
18 eqid 2733 . . . . . . 7 (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶)
1915, 16, 17, 18fvmptnf 6960 . . . . . 6 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹𝐵)) = ∅)
209, 19sylan9eqr 2790 . . . . 5 ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)
2120ex 412 . . . 4 𝐷 ∈ V → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅))
225, 21biimtrrid 243 . . 3 𝐷 ∈ V → (suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅))
23 ndmfv 6863 . . 3 (¬ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)
2422, 23pm2.61d1 180 . 2 𝐷 ∈ V → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)
252, 24eqtrid 2780 1 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1541  wcel 2113  wnfc 2880  Vcvv 3437  c0 4282  cmpt 5176  dom cdm 5621  Lim wlim 6315  suc csuc 6316  cfv 6489  reccrdg 8337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338
This theorem is referenced by:  ttrclselem1  9626
  Copyright terms: Public domain W3C validator