| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgsucmptnf | Structured version Visualization version GIF version | ||
| Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with rdgsucmptf 8399 to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| rdgsucmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| rdgsucmptf.2 | ⊢ Ⅎ𝑥𝐵 |
| rdgsucmptf.3 | ⊢ Ⅎ𝑥𝐷 |
| rdgsucmptf.4 | ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| rdgsucmptf.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rdgsucmptnf | ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucmptf.4 | . . 3 ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
| 2 | 1 | fveq1i 6862 | . 2 ⊢ (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) |
| 3 | rdgdmlim 8388 | . . . . 5 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
| 4 | limsuc 7828 | . . . . 5 ⊢ (Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) |
| 6 | rdgsucg 8394 | . . . . . . 7 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))) | |
| 7 | 1 | fveq1i 6862 | . . . . . . . 8 ⊢ (𝐹‘𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵) |
| 8 | 7 | fveq2i 6864 | . . . . . . 7 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)) |
| 9 | 6, 8 | eqtr4di 2783 | . . . . . 6 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
| 10 | nfmpt1 5209 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
| 11 | rdgsucmptf.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝐴 | |
| 12 | 10, 11 | nfrdg 8385 | . . . . . . . . 9 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| 13 | 1, 12 | nfcxfr 2890 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 |
| 14 | rdgsucmptf.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐵 | |
| 15 | 13, 14 | nffv 6871 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
| 16 | rdgsucmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝐷 | |
| 17 | rdgsucmptf.5 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 18 | eqid 2730 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 19 | 15, 16, 17, 18 | fvmptnf 6993 | . . . . . 6 ⊢ (¬ 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ∅) |
| 20 | 9, 19 | sylan9eqr 2787 | . . . . 5 ⊢ ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) |
| 21 | 20 | ex 412 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)) |
| 22 | 5, 21 | biimtrrid 243 | . . 3 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)) |
| 23 | ndmfv 6896 | . . 3 ⊢ (¬ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) | |
| 24 | 22, 23 | pm2.61d1 180 | . 2 ⊢ (¬ 𝐷 ∈ V → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) |
| 25 | 2, 24 | eqtrid 2777 | 1 ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2877 Vcvv 3450 ∅c0 4299 ↦ cmpt 5191 dom cdm 5641 Lim wlim 6336 suc csuc 6337 ‘cfv 6514 reccrdg 8380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 |
| This theorem is referenced by: ttrclselem1 9685 |
| Copyright terms: Public domain | W3C validator |