| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rdgsucmptnf | Structured version Visualization version GIF version | ||
| Description: The value of the recursive definition generator at a successor (special case where the characteristic function is an ordered-pair class abstraction and where the mapping class 𝐷 is a proper class). This is a technical lemma that can be used together with rdgsucmptf 8373 to help eliminate redundant sethood antecedents. (Contributed by NM, 22-Oct-2003.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| rdgsucmptf.1 | ⊢ Ⅎ𝑥𝐴 |
| rdgsucmptf.2 | ⊢ Ⅎ𝑥𝐵 |
| rdgsucmptf.3 | ⊢ Ⅎ𝑥𝐷 |
| rdgsucmptf.4 | ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| rdgsucmptf.5 | ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| rdgsucmptnf | ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsucmptf.4 | . . 3 ⊢ 𝐹 = rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
| 2 | 1 | fveq1i 6841 | . 2 ⊢ (𝐹‘suc 𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) |
| 3 | rdgdmlim 8362 | . . . . 5 ⊢ Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) | |
| 4 | limsuc 7805 | . . . . 5 ⊢ (Lim dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴))) | |
| 5 | 3, 4 | ax-mp 5 | . . . 4 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) ↔ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) |
| 6 | rdgsucg 8368 | . . . . . . 7 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵))) | |
| 7 | 1 | fveq1i 6841 | . . . . . . . 8 ⊢ (𝐹‘𝐵) = (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵) |
| 8 | 7 | fveq2i 6843 | . . . . . . 7 ⊢ ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ((𝑥 ∈ V ↦ 𝐶)‘(rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘𝐵)) |
| 9 | 6, 8 | eqtr4di 2782 | . . . . . 6 ⊢ (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵))) |
| 10 | nfmpt1 5201 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝑥 ∈ V ↦ 𝐶) | |
| 11 | rdgsucmptf.1 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝐴 | |
| 12 | 10, 11 | nfrdg 8359 | . . . . . . . . 9 ⊢ Ⅎ𝑥rec((𝑥 ∈ V ↦ 𝐶), 𝐴) |
| 13 | 1, 12 | nfcxfr 2889 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐹 |
| 14 | rdgsucmptf.2 | . . . . . . . 8 ⊢ Ⅎ𝑥𝐵 | |
| 15 | 13, 14 | nffv 6850 | . . . . . . 7 ⊢ Ⅎ𝑥(𝐹‘𝐵) |
| 16 | rdgsucmptf.3 | . . . . . . 7 ⊢ Ⅎ𝑥𝐷 | |
| 17 | rdgsucmptf.5 | . . . . . . 7 ⊢ (𝑥 = (𝐹‘𝐵) → 𝐶 = 𝐷) | |
| 18 | eqid 2729 | . . . . . . 7 ⊢ (𝑥 ∈ V ↦ 𝐶) = (𝑥 ∈ V ↦ 𝐶) | |
| 19 | 15, 16, 17, 18 | fvmptnf 6972 | . . . . . 6 ⊢ (¬ 𝐷 ∈ V → ((𝑥 ∈ V ↦ 𝐶)‘(𝐹‘𝐵)) = ∅) |
| 20 | 9, 19 | sylan9eqr 2786 | . . . . 5 ⊢ ((¬ 𝐷 ∈ V ∧ 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴)) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) |
| 21 | 20 | ex 412 | . . . 4 ⊢ (¬ 𝐷 ∈ V → (𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)) |
| 22 | 5, 21 | biimtrrid 243 | . . 3 ⊢ (¬ 𝐷 ∈ V → (suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅)) |
| 23 | ndmfv 6875 | . . 3 ⊢ (¬ suc 𝐵 ∈ dom rec((𝑥 ∈ V ↦ 𝐶), 𝐴) → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) | |
| 24 | 22, 23 | pm2.61d1 180 | . 2 ⊢ (¬ 𝐷 ∈ V → (rec((𝑥 ∈ V ↦ 𝐶), 𝐴)‘suc 𝐵) = ∅) |
| 25 | 2, 24 | eqtrid 2776 | 1 ⊢ (¬ 𝐷 ∈ V → (𝐹‘suc 𝐵) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Ⅎwnfc 2876 Vcvv 3444 ∅c0 4292 ↦ cmpt 5183 dom cdm 5631 Lim wlim 6321 suc csuc 6322 ‘cfv 6499 reccrdg 8354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 |
| This theorem is referenced by: ttrclselem1 9654 |
| Copyright terms: Public domain | W3C validator |