| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nmrtri | Structured version Visualization version GIF version | ||
| Description: Reverse triangle inequality for the norm of a subtraction. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 4-Oct-2015.) |
| Ref | Expression |
|---|---|
| nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
| nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
| nmmtri.m | ⊢ − = (-g‘𝐺) |
| Ref | Expression |
|---|---|
| nmrtri | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ≤ (𝑁‘(𝐴 − 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpms 24539 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
| 2 | 1 | 3ad2ant1 1133 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ MetSp) |
| 3 | simp2 1137 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
| 4 | simp3 1138 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
| 5 | ngpgrp 24538 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
| 6 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ Grp) |
| 7 | nmf.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
| 8 | eqid 2735 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 9 | 7, 8 | grpidcl 18948 | . . . 4 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
| 10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (0g‘𝐺) ∈ 𝑋) |
| 11 | eqid 2735 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
| 12 | 7, 11 | msrtri 24411 | . . 3 ⊢ ((𝐺 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋)) → (abs‘((𝐴(dist‘𝐺)(0g‘𝐺)) − (𝐵(dist‘𝐺)(0g‘𝐺)))) ≤ (𝐴(dist‘𝐺)𝐵)) |
| 13 | 2, 3, 4, 10, 12 | syl13anc 1374 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝐴(dist‘𝐺)(0g‘𝐺)) − (𝐵(dist‘𝐺)(0g‘𝐺)))) ≤ (𝐴(dist‘𝐺)𝐵)) |
| 14 | nmf.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
| 15 | 14, 7, 8, 11 | nmval 24528 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴(dist‘𝐺)(0g‘𝐺))) |
| 16 | 15 | 3ad2ant2 1134 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴(dist‘𝐺)(0g‘𝐺))) |
| 17 | 14, 7, 8, 11 | nmval 24528 | . . . . 5 ⊢ (𝐵 ∈ 𝑋 → (𝑁‘𝐵) = (𝐵(dist‘𝐺)(0g‘𝐺))) |
| 18 | 17 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝐵(dist‘𝐺)(0g‘𝐺))) |
| 19 | 16, 18 | oveq12d 7423 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) − (𝑁‘𝐵)) = ((𝐴(dist‘𝐺)(0g‘𝐺)) − (𝐵(dist‘𝐺)(0g‘𝐺)))) |
| 20 | 19 | fveq2d 6880 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) = (abs‘((𝐴(dist‘𝐺)(0g‘𝐺)) − (𝐵(dist‘𝐺)(0g‘𝐺))))) |
| 21 | nmmtri.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 22 | 14, 7, 21, 11 | ngpds 24543 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(dist‘𝐺)𝐵) = (𝑁‘(𝐴 − 𝐵))) |
| 23 | 22 | eqcomd 2741 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) = (𝐴(dist‘𝐺)𝐵)) |
| 24 | 13, 20, 23 | 3brtr4d 5151 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ≤ (𝑁‘(𝐴 − 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ≤ cle 11270 − cmin 11466 abscabs 15253 Basecbs 17228 distcds 17280 0gc0g 17453 Grpcgrp 18916 -gcsg 18918 MetSpcms 24257 normcnm 24515 NrmGrpcngp 24516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-mulr 17285 df-tset 17290 df-ple 17291 df-ds 17293 df-0g 17455 df-topgen 17457 df-xrs 17516 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-topsp 22871 df-bases 22884 df-xms 24259 df-ms 24260 df-nm 24521 df-ngp 24522 |
| This theorem is referenced by: nm2dif 24564 |
| Copyright terms: Public domain | W3C validator |