Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nmrtri | Structured version Visualization version GIF version |
Description: Reverse triangle inequality for the norm of a subtraction. Problem 3 of [Kreyszig] p. 64. (Contributed by NM, 4-Dec-2006.) (Revised by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nmf.x | ⊢ 𝑋 = (Base‘𝐺) |
nmf.n | ⊢ 𝑁 = (norm‘𝐺) |
nmmtri.m | ⊢ − = (-g‘𝐺) |
Ref | Expression |
---|---|
nmrtri | ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ≤ (𝑁‘(𝐴 − 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ngpms 23662 | . . . 4 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
2 | 1 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ MetSp) |
3 | simp2 1135 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) | |
4 | simp3 1136 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) | |
5 | ngpgrp 23661 | . . . . 5 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ Grp) | |
6 | 5 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐺 ∈ Grp) |
7 | nmf.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
8 | eqid 2738 | . . . . 5 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
9 | 7, 8 | grpidcl 18522 | . . . 4 ⊢ (𝐺 ∈ Grp → (0g‘𝐺) ∈ 𝑋) |
10 | 6, 9 | syl 17 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (0g‘𝐺) ∈ 𝑋) |
11 | eqid 2738 | . . . 4 ⊢ (dist‘𝐺) = (dist‘𝐺) | |
12 | 7, 11 | msrtri 23533 | . . 3 ⊢ ((𝐺 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ (0g‘𝐺) ∈ 𝑋)) → (abs‘((𝐴(dist‘𝐺)(0g‘𝐺)) − (𝐵(dist‘𝐺)(0g‘𝐺)))) ≤ (𝐴(dist‘𝐺)𝐵)) |
13 | 2, 3, 4, 10, 12 | syl13anc 1370 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝐴(dist‘𝐺)(0g‘𝐺)) − (𝐵(dist‘𝐺)(0g‘𝐺)))) ≤ (𝐴(dist‘𝐺)𝐵)) |
14 | nmf.n | . . . . . 6 ⊢ 𝑁 = (norm‘𝐺) | |
15 | 14, 7, 8, 11 | nmval 23651 | . . . . 5 ⊢ (𝐴 ∈ 𝑋 → (𝑁‘𝐴) = (𝐴(dist‘𝐺)(0g‘𝐺))) |
16 | 15 | 3ad2ant2 1132 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴(dist‘𝐺)(0g‘𝐺))) |
17 | 14, 7, 8, 11 | nmval 23651 | . . . . 5 ⊢ (𝐵 ∈ 𝑋 → (𝑁‘𝐵) = (𝐵(dist‘𝐺)(0g‘𝐺))) |
18 | 17 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘𝐵) = (𝐵(dist‘𝐺)(0g‘𝐺))) |
19 | 16, 18 | oveq12d 7273 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁‘𝐴) − (𝑁‘𝐵)) = ((𝐴(dist‘𝐺)(0g‘𝐺)) − (𝐵(dist‘𝐺)(0g‘𝐺)))) |
20 | 19 | fveq2d 6760 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) = (abs‘((𝐴(dist‘𝐺)(0g‘𝐺)) − (𝐵(dist‘𝐺)(0g‘𝐺))))) |
21 | nmmtri.m | . . . 4 ⊢ − = (-g‘𝐺) | |
22 | 14, 7, 21, 11 | ngpds 23666 | . . 3 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴(dist‘𝐺)𝐵) = (𝑁‘(𝐴 − 𝐵))) |
23 | 22 | eqcomd 2744 | . 2 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝑁‘(𝐴 − 𝐵)) = (𝐴(dist‘𝐺)𝐵)) |
24 | 13, 20, 23 | 3brtr4d 5102 | 1 ⊢ ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (abs‘((𝑁‘𝐴) − (𝑁‘𝐵))) ≤ (𝑁‘(𝐴 − 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ≤ cle 10941 − cmin 11135 abscabs 14873 Basecbs 16840 distcds 16897 0gc0g 17067 Grpcgrp 18492 -gcsg 18494 MetSpcms 23379 normcnm 23638 NrmGrpcngp 23639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-topgen 17071 df-xrs 17130 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-xms 23381 df-ms 23382 df-nm 23644 df-ngp 23645 |
This theorem is referenced by: nm2dif 23687 |
Copyright terms: Public domain | W3C validator |