MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgngp Structured version   Visualization version   GIF version

Theorem subgngp 23780
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subgngp.h 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgngp ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)

Proof of Theorem subgngp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgngp.h . . . 4 𝐻 = (𝐺s 𝐴)
21subggrp 18747 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 482 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 ngpms 23745 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
5 ressms 23671 . . . 4 ((𝐺 ∈ MetSp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
64, 5sylan 580 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
71, 6eqeltrid 2843 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ MetSp)
8 simplr 766 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ∈ (SubGrp‘𝐺))
9 simprl 768 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐻))
101subgbas 18748 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1110ad2antlr 724 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 = (Base‘𝐻))
129, 11eleqtrrd 2842 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥𝐴)
13 simprr 770 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐻))
1413, 11eleqtrrd 2842 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦𝐴)
15 eqid 2738 . . . . . . 7 (-g𝐺) = (-g𝐺)
16 eqid 2738 . . . . . . 7 (-g𝐻) = (-g𝐻)
1715, 1, 16subgsub 18756 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴𝑦𝐴) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
188, 12, 14, 17syl3anc 1370 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
1918fveq2d 6772 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
20 eqid 2738 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
211, 20ressds 17109 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻))
2221ad2antlr 724 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (dist‘𝐺) = (dist‘𝐻))
2322oveqd 7286 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = (𝑥(dist‘𝐻)𝑦))
24 simpll 764 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐺 ∈ NrmGrp)
25 eqid 2738 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
2625subgss 18745 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
2726ad2antlr 724 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ⊆ (Base‘𝐺))
2827, 12sseldd 3923 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐺))
2927, 14sseldd 3923 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐺))
30 eqid 2738 . . . . . . 7 (norm‘𝐺) = (norm‘𝐺)
3130, 25, 15, 20ngpds 23749 . . . . . 6 ((𝐺 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3224, 28, 29, 31syl3anc 1370 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3323, 32eqtr3d 2780 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
34 eqid 2738 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
3534, 16grpsubcl 18644 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
36353expb 1119 . . . . . . 7 ((𝐻 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
373, 36sylan 580 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
3837, 11eleqtrrd 2842 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ 𝐴)
39 eqid 2738 . . . . . 6 (norm‘𝐻) = (norm‘𝐻)
401, 30, 39subgnm2 23779 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐻)𝑦) ∈ 𝐴) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
418, 38, 40syl2anc 584 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
4219, 33, 413eqtr4d 2788 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
4342ralrimivva 3111 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
44 eqid 2738 . . 3 (dist‘𝐻) = (dist‘𝐻)
4539, 16, 44, 34isngp3 23743 . 2 (𝐻 ∈ NrmGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ MetSp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦))))
463, 7, 43, 45syl3anbrc 1342 1 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3888  cfv 6428  (class class class)co 7269  Basecbs 16901  s cress 16930  distcds 16960  Grpcgrp 18566  -gcsg 18568  SubGrpcsubg 18738  MetSpcms 23460  normcnm 23721  NrmGrpcngp 23722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5210  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7580  ax-cnex 10916  ax-resscn 10917  ax-1cn 10918  ax-icn 10919  ax-addcl 10920  ax-addrcl 10921  ax-mulcl 10922  ax-mulrcl 10923  ax-mulcom 10924  ax-addass 10925  ax-mulass 10926  ax-distr 10927  ax-i2m1 10928  ax-1ne0 10929  ax-1rid 10930  ax-rnegex 10931  ax-rrecex 10932  ax-cnre 10933  ax-pre-lttri 10934  ax-pre-lttrn 10935  ax-pre-ltadd 10936  ax-pre-mulgt0 10937  ax-pre-sup 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5486  df-eprel 5492  df-po 5500  df-so 5501  df-fr 5541  df-we 5543  df-xp 5592  df-rel 5593  df-cnv 5594  df-co 5595  df-dm 5596  df-rn 5597  df-res 5598  df-ima 5599  df-pred 6197  df-ord 6264  df-on 6265  df-lim 6266  df-suc 6267  df-iota 6386  df-fun 6430  df-fn 6431  df-f 6432  df-f1 6433  df-fo 6434  df-f1o 6435  df-fv 6436  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-om 7705  df-1st 7822  df-2nd 7823  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-er 8487  df-map 8606  df-en 8723  df-dom 8724  df-sdom 8725  df-sup 9190  df-inf 9191  df-pnf 11000  df-mnf 11001  df-xr 11002  df-ltxr 11003  df-le 11004  df-sub 11196  df-neg 11197  df-div 11622  df-nn 11963  df-2 12025  df-3 12026  df-4 12027  df-5 12028  df-6 12029  df-7 12030  df-8 12031  df-9 12032  df-n0 12223  df-z 12309  df-dec 12427  df-uz 12572  df-q 12678  df-rp 12720  df-xneg 12837  df-xadd 12838  df-xmul 12839  df-sets 16854  df-slot 16872  df-ndx 16884  df-base 16902  df-ress 16931  df-plusg 16964  df-tset 16970  df-ds 16973  df-rest 17122  df-topn 17123  df-0g 17141  df-topgen 17143  df-mgm 18315  df-sgrp 18364  df-mnd 18375  df-grp 18569  df-minusg 18570  df-sbg 18571  df-subg 18741  df-psmet 20578  df-xmet 20579  df-met 20580  df-bl 20581  df-mopn 20582  df-top 22032  df-topon 22049  df-topsp 22071  df-bases 22085  df-xms 23462  df-ms 23463  df-nm 23727  df-ngp 23728
This theorem is referenced by:  subrgnrg  23826  lssnlm  23854  cssbn  24528
  Copyright terms: Public domain W3C validator