MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgngp Structured version   Visualization version   GIF version

Theorem subgngp 24499
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subgngp.h 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgngp ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)

Proof of Theorem subgngp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgngp.h . . . 4 𝐻 = (𝐺s 𝐴)
21subggrp 19037 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 481 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 ngpms 24464 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
5 ressms 24390 . . . 4 ((𝐺 ∈ MetSp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
64, 5sylan 580 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
71, 6eqeltrid 2832 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ MetSp)
8 simplr 768 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ∈ (SubGrp‘𝐺))
9 simprl 770 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐻))
101subgbas 19038 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1110ad2antlr 727 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 = (Base‘𝐻))
129, 11eleqtrrd 2831 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥𝐴)
13 simprr 772 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐻))
1413, 11eleqtrrd 2831 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦𝐴)
15 eqid 2729 . . . . . . 7 (-g𝐺) = (-g𝐺)
16 eqid 2729 . . . . . . 7 (-g𝐻) = (-g𝐻)
1715, 1, 16subgsub 19046 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴𝑦𝐴) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
188, 12, 14, 17syl3anc 1373 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
1918fveq2d 6844 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
20 eqid 2729 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
211, 20ressds 17349 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻))
2221ad2antlr 727 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (dist‘𝐺) = (dist‘𝐻))
2322oveqd 7386 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = (𝑥(dist‘𝐻)𝑦))
24 simpll 766 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐺 ∈ NrmGrp)
25 eqid 2729 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
2625subgss 19035 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
2726ad2antlr 727 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ⊆ (Base‘𝐺))
2827, 12sseldd 3944 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐺))
2927, 14sseldd 3944 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐺))
30 eqid 2729 . . . . . . 7 (norm‘𝐺) = (norm‘𝐺)
3130, 25, 15, 20ngpds 24468 . . . . . 6 ((𝐺 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3224, 28, 29, 31syl3anc 1373 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3323, 32eqtr3d 2766 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
34 eqid 2729 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
3534, 16grpsubcl 18928 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
36353expb 1120 . . . . . . 7 ((𝐻 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
373, 36sylan 580 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
3837, 11eleqtrrd 2831 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ 𝐴)
39 eqid 2729 . . . . . 6 (norm‘𝐻) = (norm‘𝐻)
401, 30, 39subgnm2 24498 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐻)𝑦) ∈ 𝐴) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
418, 38, 40syl2anc 584 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
4219, 33, 413eqtr4d 2774 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
4342ralrimivva 3178 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
44 eqid 2729 . . 3 (dist‘𝐻) = (dist‘𝐻)
4539, 16, 44, 34isngp3 24462 . 2 (𝐻 ∈ NrmGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ MetSp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦))))
463, 7, 43, 45syl3anbrc 1344 1 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  distcds 17205  Grpcgrp 18841  -gcsg 18843  SubGrpcsubg 19028  MetSpcms 24182  normcnm 24440  NrmGrpcngp 24441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-tset 17215  df-ds 17218  df-rest 17361  df-topn 17362  df-0g 17380  df-topgen 17382  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-subg 19031  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-top 22757  df-topon 22774  df-topsp 22796  df-bases 22809  df-xms 24184  df-ms 24185  df-nm 24446  df-ngp 24447
This theorem is referenced by:  subrgnrg  24537  lssnlm  24565  cssbn  25251
  Copyright terms: Public domain W3C validator