MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgngp Structured version   Visualization version   GIF version

Theorem subgngp 23178
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subgngp.h 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgngp ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)

Proof of Theorem subgngp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgngp.h . . . 4 𝐻 = (𝐺s 𝐴)
21subggrp 18227 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 482 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 ngpms 23143 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
5 ressms 23070 . . . 4 ((𝐺 ∈ MetSp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
64, 5sylan 580 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
71, 6eqeltrid 2922 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ MetSp)
8 simplr 765 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ∈ (SubGrp‘𝐺))
9 simprl 767 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐻))
101subgbas 18228 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1110ad2antlr 723 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 = (Base‘𝐻))
129, 11eleqtrrd 2921 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥𝐴)
13 simprr 769 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐻))
1413, 11eleqtrrd 2921 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦𝐴)
15 eqid 2826 . . . . . . 7 (-g𝐺) = (-g𝐺)
16 eqid 2826 . . . . . . 7 (-g𝐻) = (-g𝐻)
1715, 1, 16subgsub 18236 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴𝑦𝐴) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
188, 12, 14, 17syl3anc 1365 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
1918fveq2d 6673 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
20 eqid 2826 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
211, 20ressds 16681 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻))
2221ad2antlr 723 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (dist‘𝐺) = (dist‘𝐻))
2322oveqd 7167 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = (𝑥(dist‘𝐻)𝑦))
24 simpll 763 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐺 ∈ NrmGrp)
25 eqid 2826 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
2625subgss 18225 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
2726ad2antlr 723 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ⊆ (Base‘𝐺))
2827, 12sseldd 3972 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐺))
2927, 14sseldd 3972 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐺))
30 eqid 2826 . . . . . . 7 (norm‘𝐺) = (norm‘𝐺)
3130, 25, 15, 20ngpds 23147 . . . . . 6 ((𝐺 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3224, 28, 29, 31syl3anc 1365 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3323, 32eqtr3d 2863 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
34 eqid 2826 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
3534, 16grpsubcl 18124 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
36353expb 1114 . . . . . . 7 ((𝐻 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
373, 36sylan 580 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
3837, 11eleqtrrd 2921 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ 𝐴)
39 eqid 2826 . . . . . 6 (norm‘𝐻) = (norm‘𝐻)
401, 30, 39subgnm2 23177 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐻)𝑦) ∈ 𝐴) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
418, 38, 40syl2anc 584 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
4219, 33, 413eqtr4d 2871 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
4342ralrimivva 3196 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
44 eqid 2826 . . 3 (dist‘𝐻) = (dist‘𝐻)
4539, 16, 44, 34isngp3 23141 . 2 (𝐻 ∈ NrmGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ MetSp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦))))
463, 7, 43, 45syl3anbrc 1337 1 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2107  wral 3143  wss 3940  cfv 6354  (class class class)co 7150  Basecbs 16478  s cress 16479  distcds 16569  Grpcgrp 18048  -gcsg 18050  SubGrpcsubg 18218  MetSpcms 22862  normcnm 23120  NrmGrpcngp 23121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-1st 7685  df-2nd 7686  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-map 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-rp 12385  df-xneg 12502  df-xadd 12503  df-xmul 12504  df-ndx 16481  df-slot 16482  df-base 16484  df-sets 16485  df-ress 16486  df-plusg 16573  df-tset 16579  df-ds 16582  df-rest 16691  df-topn 16692  df-0g 16710  df-topgen 16712  df-mgm 17847  df-sgrp 17896  df-mnd 17907  df-grp 18051  df-minusg 18052  df-sbg 18053  df-subg 18221  df-psmet 20472  df-xmet 20473  df-met 20474  df-bl 20475  df-mopn 20476  df-top 21437  df-topon 21454  df-topsp 21476  df-bases 21489  df-xms 22864  df-ms 22865  df-nm 23126  df-ngp 23127
This theorem is referenced by:  subrgnrg  23216  lssnlm  23244  cssbn  23912
  Copyright terms: Public domain W3C validator