MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subgngp Structured version   Visualization version   GIF version

Theorem subgngp 24550
Description: A normed group restricted to a subgroup is a normed group. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypothesis
Ref Expression
subgngp.h 𝐻 = (𝐺s 𝐴)
Assertion
Ref Expression
subgngp ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)

Proof of Theorem subgngp
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 subgngp.h . . . 4 𝐻 = (𝐺s 𝐴)
21subggrp 19042 . . 3 (𝐴 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
32adantl 481 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ Grp)
4 ngpms 24515 . . . 4 (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp)
5 ressms 24441 . . . 4 ((𝐺 ∈ MetSp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
64, 5sylan 580 . . 3 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → (𝐺s 𝐴) ∈ MetSp)
71, 6eqeltrid 2835 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ MetSp)
8 simplr 768 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ∈ (SubGrp‘𝐺))
9 simprl 770 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐻))
101subgbas 19043 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 = (Base‘𝐻))
1110ad2antlr 727 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 = (Base‘𝐻))
129, 11eleqtrrd 2834 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥𝐴)
13 simprr 772 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐻))
1413, 11eleqtrrd 2834 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦𝐴)
15 eqid 2731 . . . . . . 7 (-g𝐺) = (-g𝐺)
16 eqid 2731 . . . . . . 7 (-g𝐻) = (-g𝐻)
1715, 1, 16subgsub 19051 . . . . . 6 ((𝐴 ∈ (SubGrp‘𝐺) ∧ 𝑥𝐴𝑦𝐴) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
188, 12, 14, 17syl3anc 1373 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐺)𝑦) = (𝑥(-g𝐻)𝑦))
1918fveq2d 6826 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
20 eqid 2731 . . . . . . . 8 (dist‘𝐺) = (dist‘𝐺)
211, 20ressds 17314 . . . . . . 7 (𝐴 ∈ (SubGrp‘𝐺) → (dist‘𝐺) = (dist‘𝐻))
2221ad2antlr 727 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (dist‘𝐺) = (dist‘𝐻))
2322oveqd 7363 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = (𝑥(dist‘𝐻)𝑦))
24 simpll 766 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐺 ∈ NrmGrp)
25 eqid 2731 . . . . . . . . 9 (Base‘𝐺) = (Base‘𝐺)
2625subgss 19040 . . . . . . . 8 (𝐴 ∈ (SubGrp‘𝐺) → 𝐴 ⊆ (Base‘𝐺))
2726ad2antlr 727 . . . . . . 7 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝐴 ⊆ (Base‘𝐺))
2827, 12sseldd 3930 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑥 ∈ (Base‘𝐺))
2927, 14sseldd 3930 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → 𝑦 ∈ (Base‘𝐺))
30 eqid 2731 . . . . . . 7 (norm‘𝐺) = (norm‘𝐺)
3130, 25, 15, 20ngpds 24519 . . . . . 6 ((𝐺 ∈ NrmGrp ∧ 𝑥 ∈ (Base‘𝐺) ∧ 𝑦 ∈ (Base‘𝐺)) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3224, 28, 29, 31syl3anc 1373 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐺)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
3323, 32eqtr3d 2768 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐺)‘(𝑥(-g𝐺)𝑦)))
34 eqid 2731 . . . . . . . . 9 (Base‘𝐻) = (Base‘𝐻)
3534, 16grpsubcl 18933 . . . . . . . 8 ((𝐻 ∈ Grp ∧ 𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻)) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
36353expb 1120 . . . . . . 7 ((𝐻 ∈ Grp ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
373, 36sylan 580 . . . . . 6 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ (Base‘𝐻))
3837, 11eleqtrrd 2834 . . . . 5 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(-g𝐻)𝑦) ∈ 𝐴)
39 eqid 2731 . . . . . 6 (norm‘𝐻) = (norm‘𝐻)
401, 30, 39subgnm2 24549 . . . . 5 ((𝐴 ∈ (SubGrp‘𝐺) ∧ (𝑥(-g𝐻)𝑦) ∈ 𝐴) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
418, 38, 40syl2anc 584 . . . 4 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)) = ((norm‘𝐺)‘(𝑥(-g𝐻)𝑦)))
4219, 33, 413eqtr4d 2776 . . 3 (((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) ∧ (𝑥 ∈ (Base‘𝐻) ∧ 𝑦 ∈ (Base‘𝐻))) → (𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
4342ralrimivva 3175 . 2 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦)))
44 eqid 2731 . . 3 (dist‘𝐻) = (dist‘𝐻)
4539, 16, 44, 34isngp3 24513 . 2 (𝐻 ∈ NrmGrp ↔ (𝐻 ∈ Grp ∧ 𝐻 ∈ MetSp ∧ ∀𝑥 ∈ (Base‘𝐻)∀𝑦 ∈ (Base‘𝐻)(𝑥(dist‘𝐻)𝑦) = ((norm‘𝐻)‘(𝑥(-g𝐻)𝑦))))
463, 7, 43, 45syl3anbrc 1344 1 ((𝐺 ∈ NrmGrp ∧ 𝐴 ∈ (SubGrp‘𝐺)) → 𝐻 ∈ NrmGrp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  distcds 17170  Grpcgrp 18846  -gcsg 18848  SubGrpcsubg 19033  MetSpcms 24233  normcnm 24491  NrmGrpcngp 24492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-ds 17183  df-rest 17326  df-topn 17327  df-0g 17345  df-topgen 17347  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-sbg 18851  df-subg 19036  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-xms 24235  df-ms 24236  df-nm 24497  df-ngp 24498
This theorem is referenced by:  subrgnrg  24588  lssnlm  24616  cssbn  25302
  Copyright terms: Public domain W3C validator