MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3 Structured version   Visualization version   GIF version

Theorem minveclem3 24033
Description: Lemma for minvec 24040. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
Assertion
Ref Expression
minveclem3 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem3
Dummy variables 𝑤 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ+)
2 2z 12002 . . . . . . . . 9 2 ∈ ℤ
3 rpexpcl 13444 . . . . . . . . 9 ((𝑠 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑠↑2) ∈ ℝ+)
41, 2, 3sylancl 589 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠↑2) ∈ ℝ+)
54rphalfcld 12431 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ((𝑠↑2) / 2) ∈ ℝ+)
6 4nn 11708 . . . . . . . 8 4 ∈ ℕ
7 nnrp 12388 . . . . . . . 8 (4 ∈ ℕ → 4 ∈ ℝ+)
86, 7ax-mp 5 . . . . . . 7 4 ∈ ℝ+
9 rpdivcl 12402 . . . . . . 7 ((((𝑠↑2) / 2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
105, 8, 9sylancl 589 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
11 minvec.y . . . . . . . 8 (𝜑𝑌 ∈ (LSubSp‘𝑈))
1211adantr 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈))
13 rabexg 5198 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
1412, 13syl 17 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
15 eqid 2798 . . . . . . 7 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
16 oveq2 7143 . . . . . . . . 9 (𝑟 = (((𝑠↑2) / 2) / 4) → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
1716breq2d 5042 . . . . . . . 8 (𝑟 = (((𝑠↑2) / 2) / 4) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
1817rabbidv 3427 . . . . . . 7 (𝑟 = (((𝑠↑2) / 2) / 4) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})
1915, 18elrnmpt1s 5793 . . . . . 6 (((((𝑠↑2) / 2) / 4) ∈ ℝ+ ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
2010, 14, 19syl2anc 587 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
21 minvec.f . . . . 5 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2220, 21eleqtrrdi 2901 . . . 4 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹)
23 oveq2 7143 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐴𝐷𝑦) = (𝐴𝐷𝑢))
2423oveq1d 7150 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑢)↑2))
2524breq1d 5040 . . . . . . . 8 (𝑦 = 𝑢 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
2625elrab 3628 . . . . . . 7 (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
27 oveq2 7143 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝐴𝐷𝑦) = (𝐴𝐷𝑣))
2827oveq1d 7150 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑣)↑2))
2928breq1d 5040 . . . . . . . 8 (𝑦 = 𝑣 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3029elrab 3628 . . . . . . 7 (𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3126, 30anbi12i 629 . . . . . 6 ((𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) ↔ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))))
32 simprll 778 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑌)
33 simprrl 780 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑌)
3432, 33ovresd 7295 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
35 minvec.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℂPreHil)
36 cphngp 23778 . . . . . . . . . . . . 13 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
37 ngpms 23206 . . . . . . . . . . . . 13 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
38 minvec.x . . . . . . . . . . . . . 14 𝑋 = (Base‘𝑈)
39 minvec.d . . . . . . . . . . . . . 14 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
4038, 39msmet 23064 . . . . . . . . . . . . 13 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
4135, 36, 37, 404syl 19 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
4241ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐷 ∈ (Met‘𝑋))
43 eqid 2798 . . . . . . . . . . . . . . 15 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4438, 43lssss 19701 . . . . . . . . . . . . . 14 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
4511, 44syl 17 . . . . . . . . . . . . 13 (𝜑𝑌𝑋)
4645ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌𝑋)
4746, 32sseldd 3916 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑋)
4846, 33sseldd 3916 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑋)
49 metcl 22939 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐷𝑣) ∈ ℝ)
5042, 47, 48, 49syl3anc 1368 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) ∈ ℝ)
5150resqcld 13607 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ∈ ℝ)
525adantr 484 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ+)
5352rpred 12419 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ)
544adantr 484 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ+)
5554rpred 12419 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ)
56 minvec.m . . . . . . . . . . 11 = (-g𝑈)
57 minvec.n . . . . . . . . . . 11 𝑁 = (norm‘𝑈)
5835ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑈 ∈ ℂPreHil)
5911ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ∈ (LSubSp‘𝑈))
60 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
6160ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑈s 𝑌) ∈ CMetSp)
62 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
6362ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐴𝑋)
64 minvec.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑈)
65 minvec.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
66 minvec.s . . . . . . . . . . 11 𝑆 = inf(𝑅, ℝ, < )
6710adantr 484 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
6867rpred 12419 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ)
6967rpge0d 12423 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (((𝑠↑2) / 2) / 4))
70 simprlr 779 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
71 simprrr 781 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
7238, 56, 57, 58, 59, 61, 63, 64, 65, 66, 39, 68, 69, 32, 33, 70, 71minveclem2 24030 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ (4 · (((𝑠↑2) / 2) / 4)))
7352rpcnd 12421 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℂ)
74 4cn 11710 . . . . . . . . . . . 12 4 ∈ ℂ
7574a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ∈ ℂ)
76 4ne0 11733 . . . . . . . . . . . 12 4 ≠ 0
7776a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ≠ 0)
7873, 75, 77divcan2d 11407 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (4 · (((𝑠↑2) / 2) / 4)) = ((𝑠↑2) / 2))
7972, 78breqtrd 5056 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ ((𝑠↑2) / 2))
80 rphalflt 12406 . . . . . . . . . 10 ((𝑠↑2) ∈ ℝ+ → ((𝑠↑2) / 2) < (𝑠↑2))
8154, 80syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) < (𝑠↑2))
8251, 53, 55, 79, 81lelttrd 10787 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) < (𝑠↑2))
83 rpre 12385 . . . . . . . . . 10 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
8483ad2antlr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑠 ∈ ℝ)
85 metge0 22952 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → 0 ≤ (𝑢𝐷𝑣))
8642, 47, 48, 85syl3anc 1368 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (𝑢𝐷𝑣))
87 rpge0 12390 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 ≤ 𝑠)
8887ad2antlr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ 𝑠)
8950, 84, 86, 88lt2sqd 13615 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣) < 𝑠 ↔ ((𝑢𝐷𝑣)↑2) < (𝑠↑2)))
9082, 89mpbird 260 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) < 𝑠)
9134, 90eqbrtrd 5052 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9231, 91sylan2b 596 . . . . 5 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9392ralrimivva 3156 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
94 raleq 3358 . . . . . 6 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9594raleqbi1dv 3356 . . . . 5 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9695rspcev 3571 . . . 4 (({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹 ∧ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9722, 93, 96syl2anc 587 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9897ralrimiva 3149 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9938, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39minveclem3a 24031 . . . 4 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
100 cmetmet 23890 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
101 metxmet 22941 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10299, 100, 1013syl 18 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10338, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39, 21minveclem3b 24032 . . 3 (𝜑𝐹 ∈ (fBas‘𝑌))
104 fgcfil 23875 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (fBas‘𝑌)) → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
105102, 103, 104syl2anc 587 . 2 (𝜑 → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
10698, 105mpbird 260 1 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881   class class class wbr 5030  cmpt 5110   × cxp 5517  ran crn 5520  cres 5521  cfv 6324  (class class class)co 7135  infcinf 8889  cc 10524  cr 10525  0cc0 10526   + caddc 10529   · cmul 10531   < clt 10664  cle 10665   / cdiv 11286  cn 11625  2c2 11680  4c4 11682  cz 11969  +crp 12377  cexp 13425  Basecbs 16475  s cress 16476  distcds 16566  TopOpenctopn 16687  -gcsg 18097  LSubSpclss 19696  ∞Metcxmet 20076  Metcmet 20077  fBascfbas 20079  filGencfg 20080  MetSpcms 22925  normcnm 23183  NrmGrpcngp 23184  ℂPreHilccph 23771  CauFilccfil 23856  CMetccmet 23858  CMetSpccms 23936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-tpos 7875  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ico 12732  df-fz 12886  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-0g 16707  df-topgen 16709  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-cring 19293  df-oppr 19369  df-dvdsr 19387  df-unit 19388  df-invr 19418  df-dvr 19429  df-rnghom 19463  df-drng 19497  df-subrg 19526  df-staf 19609  df-srng 19610  df-lmod 19629  df-lss 19697  df-lmhm 19787  df-lvec 19868  df-sra 19937  df-rgmod 19938  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-phl 20315  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-fil 22451  df-xms 22927  df-ms 22928  df-nm 23189  df-ngp 23190  df-nlm 23193  df-clm 23668  df-cph 23773  df-cfil 23859  df-cmet 23861  df-cms 23939
This theorem is referenced by:  minveclem4a  24034
  Copyright terms: Public domain W3C validator