| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 𝑠 ∈
ℝ+) |
| 2 | | 2z 12629 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
| 3 | | rpexpcl 14103 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑠↑2) ∈
ℝ+) |
| 4 | 1, 2, 3 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → (𝑠↑2) ∈
ℝ+) |
| 5 | 4 | rphalfcld 13068 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → ((𝑠↑2) / 2) ∈
ℝ+) |
| 6 | | 4nn 12328 |
. . . . . . . 8
⊢ 4 ∈
ℕ |
| 7 | | nnrp 13025 |
. . . . . . . 8
⊢ (4 ∈
ℕ → 4 ∈ ℝ+) |
| 8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢ 4 ∈
ℝ+ |
| 9 | | rpdivcl 13039 |
. . . . . . 7
⊢ ((((𝑠↑2) / 2) ∈
ℝ+ ∧ 4 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈
ℝ+) |
| 10 | 5, 8, 9 | sylancl 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈
ℝ+) |
| 11 | | minvec.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
| 12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈)) |
| 13 | | rabexg 5312 |
. . . . . . 7
⊢ (𝑌 ∈ (LSubSp‘𝑈) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈
V) |
| 14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈
V) |
| 15 | | eqid 2736 |
. . . . . . 7
⊢ (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
| 16 | | oveq2 7418 |
. . . . . . . . 9
⊢ (𝑟 = (((𝑠↑2) / 2) / 4) → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) |
| 17 | 16 | breq2d 5136 |
. . . . . . . 8
⊢ (𝑟 = (((𝑠↑2) / 2) / 4) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
| 18 | 17 | rabbidv 3428 |
. . . . . . 7
⊢ (𝑟 = (((𝑠↑2) / 2) / 4) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) |
| 19 | 15, 18 | elrnmpt1s 5944 |
. . . . . 6
⊢
(((((𝑠↑2) / 2)
/ 4) ∈ ℝ+ ∧ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
| 20 | 10, 14, 19 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
| 21 | | minvec.f |
. . . . 5
⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
| 22 | 20, 21 | eleqtrrdi 2846 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹) |
| 23 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (𝐴𝐷𝑦) = (𝐴𝐷𝑢)) |
| 24 | 23 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑢)↑2)) |
| 25 | 24 | breq1d 5134 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
| 26 | 25 | elrab 3676 |
. . . . . . 7
⊢ (𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
| 27 | | oveq2 7418 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝐴𝐷𝑦) = (𝐴𝐷𝑣)) |
| 28 | 27 | oveq1d 7425 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑣)↑2)) |
| 29 | 28 | breq1d 5134 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
| 30 | 29 | elrab 3676 |
. . . . . . 7
⊢ (𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
| 31 | 26, 30 | anbi12i 628 |
. . . . . 6
⊢ ((𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) ↔ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) |
| 32 | | simprll 778 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢 ∈ 𝑌) |
| 33 | | simprrl 780 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣 ∈ 𝑌) |
| 34 | 32, 33 | ovresd 7579 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) |
| 35 | | minvec.u |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
| 36 | | cphngp 25130 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
| 37 | | ngpms 24544 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp) |
| 38 | | minvec.x |
. . . . . . . . . . . . . 14
⊢ 𝑋 = (Base‘𝑈) |
| 39 | | minvec.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
| 40 | 38, 39 | msmet 24401 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) |
| 41 | 35, 36, 37, 40 | 4syl 19 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
| 42 | 41 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐷 ∈ (Met‘𝑋)) |
| 43 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 44 | 38, 43 | lssss 20898 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
| 45 | 11, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| 46 | 45 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ⊆ 𝑋) |
| 47 | 46, 32 | sseldd 3964 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢 ∈ 𝑋) |
| 48 | 46, 33 | sseldd 3964 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣 ∈ 𝑋) |
| 49 | | metcl 24276 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → (𝑢𝐷𝑣) ∈ ℝ) |
| 50 | 42, 47, 48, 49 | syl3anc 1373 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) ∈ ℝ) |
| 51 | 50 | resqcld 14148 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ∈ ℝ) |
| 52 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈
ℝ+) |
| 53 | 52 | rpred 13056 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈
ℝ) |
| 54 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈
ℝ+) |
| 55 | 54 | rpred 13056 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈
ℝ) |
| 56 | | minvec.m |
. . . . . . . . . . 11
⊢ − =
(-g‘𝑈) |
| 57 | | minvec.n |
. . . . . . . . . . 11
⊢ 𝑁 = (norm‘𝑈) |
| 58 | 35 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑈 ∈
ℂPreHil) |
| 59 | 11 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ∈ (LSubSp‘𝑈)) |
| 60 | | minvec.w |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
| 61 | 60 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑈 ↾s 𝑌) ∈
CMetSp) |
| 62 | | minvec.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 63 | 62 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐴 ∈ 𝑋) |
| 64 | | minvec.j |
. . . . . . . . . . 11
⊢ 𝐽 = (TopOpen‘𝑈) |
| 65 | | minvec.r |
. . . . . . . . . . 11
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
| 66 | | minvec.s |
. . . . . . . . . . 11
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
| 67 | 10 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈
ℝ+) |
| 68 | 67 | rpred 13056 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈
ℝ) |
| 69 | 67 | rpge0d 13060 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (((𝑠↑2) / 2) /
4)) |
| 70 | | simprlr 779 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) |
| 71 | | simprrr 781 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) |
| 72 | 38, 56, 57, 58, 59, 61, 63, 64, 65, 66, 39, 68, 69, 32, 33, 70, 71 | minveclem2 25383 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ (4 · (((𝑠↑2) / 2) /
4))) |
| 73 | 52 | rpcnd 13058 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈
ℂ) |
| 74 | | 4cn 12330 |
. . . . . . . . . . . 12
⊢ 4 ∈
ℂ |
| 75 | 74 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ∈
ℂ) |
| 76 | | 4ne0 12353 |
. . . . . . . . . . . 12
⊢ 4 ≠
0 |
| 77 | 76 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ≠
0) |
| 78 | 73, 75, 77 | divcan2d 12024 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (4 ·
(((𝑠↑2) / 2) / 4)) =
((𝑠↑2) /
2)) |
| 79 | 72, 78 | breqtrd 5150 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ ((𝑠↑2) / 2)) |
| 80 | | rphalflt 13043 |
. . . . . . . . . 10
⊢ ((𝑠↑2) ∈
ℝ+ → ((𝑠↑2) / 2) < (𝑠↑2)) |
| 81 | 54, 80 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) < (𝑠↑2)) |
| 82 | 51, 53, 55, 79, 81 | lelttrd 11398 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) < (𝑠↑2)) |
| 83 | | rpre 13022 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ+
→ 𝑠 ∈
ℝ) |
| 84 | 83 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑠 ∈
ℝ) |
| 85 | | metge0 24289 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → 0 ≤ (𝑢𝐷𝑣)) |
| 86 | 42, 47, 48, 85 | syl3anc 1373 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (𝑢𝐷𝑣)) |
| 87 | | rpge0 13027 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ+
→ 0 ≤ 𝑠) |
| 88 | 87 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ 𝑠) |
| 89 | 50, 84, 86, 88 | lt2sqd 14279 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣) < 𝑠 ↔ ((𝑢𝐷𝑣)↑2) < (𝑠↑2))) |
| 90 | 82, 89 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) < 𝑠) |
| 91 | 34, 90 | eqbrtrd 5146 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
| 92 | 31, 91 | sylan2b 594 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
| 93 | 92 | ralrimivva 3188 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
∀𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
| 94 | | raleq 3306 |
. . . . . 6
⊢ (𝑤 = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)) |
| 95 | 94 | raleqbi1dv 3321 |
. . . . 5
⊢ (𝑤 = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)) |
| 96 | 95 | rspcev 3606 |
. . . 4
⊢ (({𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹 ∧ ∀𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) → ∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
| 97 | 22, 93, 96 | syl2anc 584 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
| 98 | 97 | ralrimiva 3133 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ ℝ+ ∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
| 99 | 38, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39 | minveclem3a 25384 |
. . . 4
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
| 100 | | cmetmet 25243 |
. . . 4
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
| 101 | | metxmet 24278 |
. . . 4
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
| 102 | 99, 100, 101 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
| 103 | 38, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39, 21 | minveclem3b 25385 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) |
| 104 | | fgcfil 25228 |
. . 3
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (fBas‘𝑌)) → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+ ∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)) |
| 105 | 102, 103,
104 | syl2anc 584 |
. 2
⊢ (𝜑 → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+ ∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)) |
| 106 | 98, 105 | mpbird 257 |
1
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) |