MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3 Structured version   Visualization version   GIF version

Theorem minveclem3 24498
Description: Lemma for minvec 24505. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
Assertion
Ref Expression
minveclem3 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem3
Dummy variables 𝑤 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ+)
2 2z 12282 . . . . . . . . 9 2 ∈ ℤ
3 rpexpcl 13729 . . . . . . . . 9 ((𝑠 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑠↑2) ∈ ℝ+)
41, 2, 3sylancl 585 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠↑2) ∈ ℝ+)
54rphalfcld 12713 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ((𝑠↑2) / 2) ∈ ℝ+)
6 4nn 11986 . . . . . . . 8 4 ∈ ℕ
7 nnrp 12670 . . . . . . . 8 (4 ∈ ℕ → 4 ∈ ℝ+)
86, 7ax-mp 5 . . . . . . 7 4 ∈ ℝ+
9 rpdivcl 12684 . . . . . . 7 ((((𝑠↑2) / 2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
105, 8, 9sylancl 585 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
11 minvec.y . . . . . . . 8 (𝜑𝑌 ∈ (LSubSp‘𝑈))
1211adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈))
13 rabexg 5250 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
1412, 13syl 17 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
15 eqid 2738 . . . . . . 7 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
16 oveq2 7263 . . . . . . . . 9 (𝑟 = (((𝑠↑2) / 2) / 4) → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
1716breq2d 5082 . . . . . . . 8 (𝑟 = (((𝑠↑2) / 2) / 4) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
1817rabbidv 3404 . . . . . . 7 (𝑟 = (((𝑠↑2) / 2) / 4) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})
1915, 18elrnmpt1s 5855 . . . . . 6 (((((𝑠↑2) / 2) / 4) ∈ ℝ+ ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
2010, 14, 19syl2anc 583 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
21 minvec.f . . . . 5 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2220, 21eleqtrrdi 2850 . . . 4 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹)
23 oveq2 7263 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐴𝐷𝑦) = (𝐴𝐷𝑢))
2423oveq1d 7270 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑢)↑2))
2524breq1d 5080 . . . . . . . 8 (𝑦 = 𝑢 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
2625elrab 3617 . . . . . . 7 (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
27 oveq2 7263 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝐴𝐷𝑦) = (𝐴𝐷𝑣))
2827oveq1d 7270 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑣)↑2))
2928breq1d 5080 . . . . . . . 8 (𝑦 = 𝑣 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3029elrab 3617 . . . . . . 7 (𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3126, 30anbi12i 626 . . . . . 6 ((𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) ↔ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))))
32 simprll 775 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑌)
33 simprrl 777 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑌)
3432, 33ovresd 7417 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
35 minvec.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℂPreHil)
36 cphngp 24242 . . . . . . . . . . . . 13 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
37 ngpms 23662 . . . . . . . . . . . . 13 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
38 minvec.x . . . . . . . . . . . . . 14 𝑋 = (Base‘𝑈)
39 minvec.d . . . . . . . . . . . . . 14 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
4038, 39msmet 23518 . . . . . . . . . . . . 13 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
4135, 36, 37, 404syl 19 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
4241ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐷 ∈ (Met‘𝑋))
43 eqid 2738 . . . . . . . . . . . . . . 15 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4438, 43lssss 20113 . . . . . . . . . . . . . 14 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
4511, 44syl 17 . . . . . . . . . . . . 13 (𝜑𝑌𝑋)
4645ad2antrr 722 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌𝑋)
4746, 32sseldd 3918 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑋)
4846, 33sseldd 3918 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑋)
49 metcl 23393 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐷𝑣) ∈ ℝ)
5042, 47, 48, 49syl3anc 1369 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) ∈ ℝ)
5150resqcld 13893 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ∈ ℝ)
525adantr 480 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ+)
5352rpred 12701 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ)
544adantr 480 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ+)
5554rpred 12701 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ)
56 minvec.m . . . . . . . . . . 11 = (-g𝑈)
57 minvec.n . . . . . . . . . . 11 𝑁 = (norm‘𝑈)
5835ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑈 ∈ ℂPreHil)
5911ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ∈ (LSubSp‘𝑈))
60 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
6160ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑈s 𝑌) ∈ CMetSp)
62 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
6362ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐴𝑋)
64 minvec.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑈)
65 minvec.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
66 minvec.s . . . . . . . . . . 11 𝑆 = inf(𝑅, ℝ, < )
6710adantr 480 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
6867rpred 12701 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ)
6967rpge0d 12705 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (((𝑠↑2) / 2) / 4))
70 simprlr 776 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
71 simprrr 778 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
7238, 56, 57, 58, 59, 61, 63, 64, 65, 66, 39, 68, 69, 32, 33, 70, 71minveclem2 24495 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ (4 · (((𝑠↑2) / 2) / 4)))
7352rpcnd 12703 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℂ)
74 4cn 11988 . . . . . . . . . . . 12 4 ∈ ℂ
7574a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ∈ ℂ)
76 4ne0 12011 . . . . . . . . . . . 12 4 ≠ 0
7776a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ≠ 0)
7873, 75, 77divcan2d 11683 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (4 · (((𝑠↑2) / 2) / 4)) = ((𝑠↑2) / 2))
7972, 78breqtrd 5096 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ ((𝑠↑2) / 2))
80 rphalflt 12688 . . . . . . . . . 10 ((𝑠↑2) ∈ ℝ+ → ((𝑠↑2) / 2) < (𝑠↑2))
8154, 80syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) < (𝑠↑2))
8251, 53, 55, 79, 81lelttrd 11063 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) < (𝑠↑2))
83 rpre 12667 . . . . . . . . . 10 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
8483ad2antlr 723 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑠 ∈ ℝ)
85 metge0 23406 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → 0 ≤ (𝑢𝐷𝑣))
8642, 47, 48, 85syl3anc 1369 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (𝑢𝐷𝑣))
87 rpge0 12672 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 ≤ 𝑠)
8887ad2antlr 723 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ 𝑠)
8950, 84, 86, 88lt2sqd 13901 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣) < 𝑠 ↔ ((𝑢𝐷𝑣)↑2) < (𝑠↑2)))
9082, 89mpbird 256 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) < 𝑠)
9134, 90eqbrtrd 5092 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9231, 91sylan2b 593 . . . . 5 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9392ralrimivva 3114 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
94 raleq 3333 . . . . . 6 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9594raleqbi1dv 3331 . . . . 5 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9695rspcev 3552 . . . 4 (({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹 ∧ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9722, 93, 96syl2anc 583 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9897ralrimiva 3107 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9938, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39minveclem3a 24496 . . . 4 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
100 cmetmet 24355 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
101 metxmet 23395 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10299, 100, 1013syl 18 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10338, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39, 21minveclem3b 24497 . . 3 (𝜑𝐹 ∈ (fBas‘𝑌))
104 fgcfil 24340 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (fBas‘𝑌)) → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
105102, 103, 104syl2anc 583 . 2 (𝜑 → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
10698, 105mpbird 256 1 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883   class class class wbr 5070  cmpt 5153   × cxp 5578  ran crn 5581  cres 5582  cfv 6418  (class class class)co 7255  infcinf 9130  cc 10800  cr 10801  0cc0 10802   + caddc 10805   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  4c4 11960  cz 12249  +crp 12659  cexp 13710  Basecbs 16840  s cress 16867  distcds 16897  TopOpenctopn 17049  -gcsg 18494  LSubSpclss 20108  ∞Metcxmet 20495  Metcmet 20496  fBascfbas 20498  filGencfg 20499  MetSpcms 23379  normcnm 23638  NrmGrpcngp 23639  ℂPreHilccph 24235  CauFilccfil 24321  CMetccmet 24323  CMetSpccms 24401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ico 13014  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-topgen 17071  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-mhm 18345  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mulg 18616  df-subg 18667  df-ghm 18747  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-dvr 19840  df-rnghom 19874  df-drng 19908  df-subrg 19937  df-staf 20020  df-srng 20021  df-lmod 20040  df-lss 20109  df-lmhm 20199  df-lvec 20280  df-sra 20349  df-rgmod 20350  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-phl 20743  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-fil 22905  df-xms 23381  df-ms 23382  df-nm 23644  df-ngp 23645  df-nlm 23648  df-clm 24132  df-cph 24237  df-cfil 24324  df-cmet 24326  df-cms 24404
This theorem is referenced by:  minveclem4a  24499
  Copyright terms: Public domain W3C validator