MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3 Structured version   Visualization version   GIF version

Theorem minveclem3 25386
Description: Lemma for minvec 25393. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
Assertion
Ref Expression
minveclem3 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem3
Dummy variables 𝑤 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ+)
2 2z 12629 . . . . . . . . 9 2 ∈ ℤ
3 rpexpcl 14103 . . . . . . . . 9 ((𝑠 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑠↑2) ∈ ℝ+)
41, 2, 3sylancl 586 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠↑2) ∈ ℝ+)
54rphalfcld 13068 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ((𝑠↑2) / 2) ∈ ℝ+)
6 4nn 12328 . . . . . . . 8 4 ∈ ℕ
7 nnrp 13025 . . . . . . . 8 (4 ∈ ℕ → 4 ∈ ℝ+)
86, 7ax-mp 5 . . . . . . 7 4 ∈ ℝ+
9 rpdivcl 13039 . . . . . . 7 ((((𝑠↑2) / 2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
105, 8, 9sylancl 586 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
11 minvec.y . . . . . . . 8 (𝜑𝑌 ∈ (LSubSp‘𝑈))
1211adantr 480 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈))
13 rabexg 5312 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
1412, 13syl 17 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
15 eqid 2736 . . . . . . 7 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
16 oveq2 7418 . . . . . . . . 9 (𝑟 = (((𝑠↑2) / 2) / 4) → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
1716breq2d 5136 . . . . . . . 8 (𝑟 = (((𝑠↑2) / 2) / 4) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
1817rabbidv 3428 . . . . . . 7 (𝑟 = (((𝑠↑2) / 2) / 4) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})
1915, 18elrnmpt1s 5944 . . . . . 6 (((((𝑠↑2) / 2) / 4) ∈ ℝ+ ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
2010, 14, 19syl2anc 584 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
21 minvec.f . . . . 5 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2220, 21eleqtrrdi 2846 . . . 4 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹)
23 oveq2 7418 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐴𝐷𝑦) = (𝐴𝐷𝑢))
2423oveq1d 7425 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑢)↑2))
2524breq1d 5134 . . . . . . . 8 (𝑦 = 𝑢 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
2625elrab 3676 . . . . . . 7 (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
27 oveq2 7418 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝐴𝐷𝑦) = (𝐴𝐷𝑣))
2827oveq1d 7425 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑣)↑2))
2928breq1d 5134 . . . . . . . 8 (𝑦 = 𝑣 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3029elrab 3676 . . . . . . 7 (𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3126, 30anbi12i 628 . . . . . 6 ((𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) ↔ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))))
32 simprll 778 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑌)
33 simprrl 780 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑌)
3432, 33ovresd 7579 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
35 minvec.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℂPreHil)
36 cphngp 25130 . . . . . . . . . . . . 13 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
37 ngpms 24544 . . . . . . . . . . . . 13 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
38 minvec.x . . . . . . . . . . . . . 14 𝑋 = (Base‘𝑈)
39 minvec.d . . . . . . . . . . . . . 14 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
4038, 39msmet 24401 . . . . . . . . . . . . 13 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
4135, 36, 37, 404syl 19 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
4241ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐷 ∈ (Met‘𝑋))
43 eqid 2736 . . . . . . . . . . . . . . 15 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4438, 43lssss 20898 . . . . . . . . . . . . . 14 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
4511, 44syl 17 . . . . . . . . . . . . 13 (𝜑𝑌𝑋)
4645ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌𝑋)
4746, 32sseldd 3964 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑋)
4846, 33sseldd 3964 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑋)
49 metcl 24276 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐷𝑣) ∈ ℝ)
5042, 47, 48, 49syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) ∈ ℝ)
5150resqcld 14148 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ∈ ℝ)
525adantr 480 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ+)
5352rpred 13056 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ)
544adantr 480 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ+)
5554rpred 13056 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ)
56 minvec.m . . . . . . . . . . 11 = (-g𝑈)
57 minvec.n . . . . . . . . . . 11 𝑁 = (norm‘𝑈)
5835ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑈 ∈ ℂPreHil)
5911ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ∈ (LSubSp‘𝑈))
60 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
6160ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑈s 𝑌) ∈ CMetSp)
62 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
6362ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐴𝑋)
64 minvec.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑈)
65 minvec.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
66 minvec.s . . . . . . . . . . 11 𝑆 = inf(𝑅, ℝ, < )
6710adantr 480 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
6867rpred 13056 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ)
6967rpge0d 13060 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (((𝑠↑2) / 2) / 4))
70 simprlr 779 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
71 simprrr 781 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
7238, 56, 57, 58, 59, 61, 63, 64, 65, 66, 39, 68, 69, 32, 33, 70, 71minveclem2 25383 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ (4 · (((𝑠↑2) / 2) / 4)))
7352rpcnd 13058 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℂ)
74 4cn 12330 . . . . . . . . . . . 12 4 ∈ ℂ
7574a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ∈ ℂ)
76 4ne0 12353 . . . . . . . . . . . 12 4 ≠ 0
7776a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ≠ 0)
7873, 75, 77divcan2d 12024 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (4 · (((𝑠↑2) / 2) / 4)) = ((𝑠↑2) / 2))
7972, 78breqtrd 5150 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ ((𝑠↑2) / 2))
80 rphalflt 13043 . . . . . . . . . 10 ((𝑠↑2) ∈ ℝ+ → ((𝑠↑2) / 2) < (𝑠↑2))
8154, 80syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) < (𝑠↑2))
8251, 53, 55, 79, 81lelttrd 11398 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) < (𝑠↑2))
83 rpre 13022 . . . . . . . . . 10 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
8483ad2antlr 727 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑠 ∈ ℝ)
85 metge0 24289 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → 0 ≤ (𝑢𝐷𝑣))
8642, 47, 48, 85syl3anc 1373 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (𝑢𝐷𝑣))
87 rpge0 13027 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 ≤ 𝑠)
8887ad2antlr 727 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ 𝑠)
8950, 84, 86, 88lt2sqd 14279 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣) < 𝑠 ↔ ((𝑢𝐷𝑣)↑2) < (𝑠↑2)))
9082, 89mpbird 257 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) < 𝑠)
9134, 90eqbrtrd 5146 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9231, 91sylan2b 594 . . . . 5 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9392ralrimivva 3188 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
94 raleq 3306 . . . . . 6 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9594raleqbi1dv 3321 . . . . 5 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9695rspcev 3606 . . . 4 (({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹 ∧ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9722, 93, 96syl2anc 584 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9897ralrimiva 3133 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9938, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39minveclem3a 25384 . . . 4 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
100 cmetmet 25243 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
101 metxmet 24278 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10299, 100, 1013syl 18 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10338, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39, 21minveclem3b 25385 . . 3 (𝜑𝐹 ∈ (fBas‘𝑌))
104 fgcfil 25228 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (fBas‘𝑌)) → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
105102, 103, 104syl2anc 584 . 2 (𝜑 → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
10698, 105mpbird 257 1 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061  {crab 3420  Vcvv 3464  wss 3931   class class class wbr 5124  cmpt 5206   × cxp 5657  ran crn 5660  cres 5661  cfv 6536  (class class class)co 7410  infcinf 9458  cc 11132  cr 11133  0cc0 11134   + caddc 11137   · cmul 11139   < clt 11274  cle 11275   / cdiv 11899  cn 12245  2c2 12300  4c4 12302  cz 12593  +crp 13013  cexp 14084  Basecbs 17233  s cress 17256  distcds 17285  TopOpenctopn 17440  -gcsg 18923  LSubSpclss 20893  ∞Metcxmet 21305  Metcmet 21306  fBascfbas 21308  filGencfg 21309  MetSpcms 24262  normcnm 24520  NrmGrpcngp 24521  ℂPreHilccph 25123  CauFilccfil 25209  CMetccmet 25211  CMetSpccms 25289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213  ax-mulf 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ico 13373  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-0g 17460  df-topgen 17462  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-rhm 20437  df-subrg 20535  df-drng 20696  df-staf 20804  df-srng 20805  df-lmod 20824  df-lss 20894  df-lmhm 20985  df-lvec 21066  df-sra 21136  df-rgmod 21137  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-phl 21591  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-fil 23789  df-xms 24264  df-ms 24265  df-nm 24526  df-ngp 24527  df-nlm 24530  df-clm 25019  df-cph 25125  df-cfil 25212  df-cmet 25214  df-cms 25292
This theorem is referenced by:  minveclem4a  25387
  Copyright terms: Public domain W3C validator