Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 𝑠 ∈
ℝ+) |
2 | | 2z 12282 |
. . . . . . . . 9
⊢ 2 ∈
ℤ |
3 | | rpexpcl 13729 |
. . . . . . . . 9
⊢ ((𝑠 ∈ ℝ+
∧ 2 ∈ ℤ) → (𝑠↑2) ∈
ℝ+) |
4 | 1, 2, 3 | sylancl 585 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → (𝑠↑2) ∈
ℝ+) |
5 | 4 | rphalfcld 12713 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → ((𝑠↑2) / 2) ∈
ℝ+) |
6 | | 4nn 11986 |
. . . . . . . 8
⊢ 4 ∈
ℕ |
7 | | nnrp 12670 |
. . . . . . . 8
⊢ (4 ∈
ℕ → 4 ∈ ℝ+) |
8 | 6, 7 | ax-mp 5 |
. . . . . . 7
⊢ 4 ∈
ℝ+ |
9 | | rpdivcl 12684 |
. . . . . . 7
⊢ ((((𝑠↑2) / 2) ∈
ℝ+ ∧ 4 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈
ℝ+) |
10 | 5, 8, 9 | sylancl 585 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈
ℝ+) |
11 | | minvec.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (LSubSp‘𝑈)) |
12 | 11 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈)) |
13 | | rabexg 5250 |
. . . . . . 7
⊢ (𝑌 ∈ (LSubSp‘𝑈) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈
V) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈
V) |
15 | | eqid 2738 |
. . . . . . 7
⊢ (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
16 | | oveq2 7263 |
. . . . . . . . 9
⊢ (𝑟 = (((𝑠↑2) / 2) / 4) → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) |
17 | 16 | breq2d 5082 |
. . . . . . . 8
⊢ (𝑟 = (((𝑠↑2) / 2) / 4) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
18 | 17 | rabbidv 3404 |
. . . . . . 7
⊢ (𝑟 = (((𝑠↑2) / 2) / 4) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) |
19 | 15, 18 | elrnmpt1s 5855 |
. . . . . 6
⊢
(((((𝑠↑2) / 2)
/ 4) ∈ ℝ+ ∧ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
20 | 10, 14, 19 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+
↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})) |
21 | | minvec.f |
. . . . 5
⊢ 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) |
22 | 20, 21 | eleqtrrdi 2850 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) → {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹) |
23 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (𝐴𝐷𝑦) = (𝐴𝐷𝑢)) |
24 | 23 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑢)↑2)) |
25 | 24 | breq1d 5080 |
. . . . . . . 8
⊢ (𝑦 = 𝑢 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
26 | 25 | elrab 3617 |
. . . . . . 7
⊢ (𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
27 | | oveq2 7263 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑣 → (𝐴𝐷𝑦) = (𝐴𝐷𝑣)) |
28 | 27 | oveq1d 7270 |
. . . . . . . . 9
⊢ (𝑦 = 𝑣 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑣)↑2)) |
29 | 28 | breq1d 5080 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
30 | 29 | elrab 3617 |
. . . . . . 7
⊢ (𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))) |
31 | 26, 30 | anbi12i 626 |
. . . . . 6
⊢ ((𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) ↔ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) |
32 | | simprll 775 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢 ∈ 𝑌) |
33 | | simprrl 777 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣 ∈ 𝑌) |
34 | 32, 33 | ovresd 7417 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣)) |
35 | | minvec.u |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑈 ∈ ℂPreHil) |
36 | | cphngp 24242 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ ℂPreHil →
𝑈 ∈
NrmGrp) |
37 | | ngpms 23662 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp) |
38 | | minvec.x |
. . . . . . . . . . . . . 14
⊢ 𝑋 = (Base‘𝑈) |
39 | | minvec.d |
. . . . . . . . . . . . . 14
⊢ 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋)) |
40 | 38, 39 | msmet 23518 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋)) |
41 | 35, 36, 37, 40 | 4syl 19 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐷 ∈ (Met‘𝑋)) |
42 | 41 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐷 ∈ (Met‘𝑋)) |
43 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
44 | 38, 43 | lssss 20113 |
. . . . . . . . . . . . . 14
⊢ (𝑌 ∈ (LSubSp‘𝑈) → 𝑌 ⊆ 𝑋) |
45 | 11, 44 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
46 | 45 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ⊆ 𝑋) |
47 | 46, 32 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢 ∈ 𝑋) |
48 | 46, 33 | sseldd 3918 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣 ∈ 𝑋) |
49 | | metcl 23393 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → (𝑢𝐷𝑣) ∈ ℝ) |
50 | 42, 47, 48, 49 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) ∈ ℝ) |
51 | 50 | resqcld 13893 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ∈ ℝ) |
52 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈
ℝ+) |
53 | 52 | rpred 12701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈
ℝ) |
54 | 4 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈
ℝ+) |
55 | 54 | rpred 12701 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈
ℝ) |
56 | | minvec.m |
. . . . . . . . . . 11
⊢ − =
(-g‘𝑈) |
57 | | minvec.n |
. . . . . . . . . . 11
⊢ 𝑁 = (norm‘𝑈) |
58 | 35 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑈 ∈
ℂPreHil) |
59 | 11 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ∈ (LSubSp‘𝑈)) |
60 | | minvec.w |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑈 ↾s 𝑌) ∈ CMetSp) |
61 | 60 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑈 ↾s 𝑌) ∈
CMetSp) |
62 | | minvec.a |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ 𝑋) |
63 | 62 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐴 ∈ 𝑋) |
64 | | minvec.j |
. . . . . . . . . . 11
⊢ 𝐽 = (TopOpen‘𝑈) |
65 | | minvec.r |
. . . . . . . . . . 11
⊢ 𝑅 = ran (𝑦 ∈ 𝑌 ↦ (𝑁‘(𝐴 − 𝑦))) |
66 | | minvec.s |
. . . . . . . . . . 11
⊢ 𝑆 = inf(𝑅, ℝ, < ) |
67 | 10 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈
ℝ+) |
68 | 67 | rpred 12701 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈
ℝ) |
69 | 67 | rpge0d 12705 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (((𝑠↑2) / 2) /
4)) |
70 | | simprlr 776 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) |
71 | | simprrr 778 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) |
72 | 38, 56, 57, 58, 59, 61, 63, 64, 65, 66, 39, 68, 69, 32, 33, 70, 71 | minveclem2 24495 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ (4 · (((𝑠↑2) / 2) /
4))) |
73 | 52 | rpcnd 12703 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈
ℂ) |
74 | | 4cn 11988 |
. . . . . . . . . . . 12
⊢ 4 ∈
ℂ |
75 | 74 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ∈
ℂ) |
76 | | 4ne0 12011 |
. . . . . . . . . . . 12
⊢ 4 ≠
0 |
77 | 76 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ≠
0) |
78 | 73, 75, 77 | divcan2d 11683 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (4 ·
(((𝑠↑2) / 2) / 4)) =
((𝑠↑2) /
2)) |
79 | 72, 78 | breqtrd 5096 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ ((𝑠↑2) / 2)) |
80 | | rphalflt 12688 |
. . . . . . . . . 10
⊢ ((𝑠↑2) ∈
ℝ+ → ((𝑠↑2) / 2) < (𝑠↑2)) |
81 | 54, 80 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) < (𝑠↑2)) |
82 | 51, 53, 55, 79, 81 | lelttrd 11063 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) < (𝑠↑2)) |
83 | | rpre 12667 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ+
→ 𝑠 ∈
ℝ) |
84 | 83 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑠 ∈
ℝ) |
85 | | metge0 23406 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → 0 ≤ (𝑢𝐷𝑣)) |
86 | 42, 47, 48, 85 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (𝑢𝐷𝑣)) |
87 | | rpge0 12672 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ℝ+
→ 0 ≤ 𝑠) |
88 | 87 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ 𝑠) |
89 | 50, 84, 86, 88 | lt2sqd 13901 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣) < 𝑠 ↔ ((𝑢𝐷𝑣)↑2) < (𝑠↑2))) |
90 | 82, 89 | mpbird 256 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) < 𝑠) |
91 | 34, 90 | eqbrtrd 5092 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ ((𝑢 ∈ 𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣 ∈ 𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
92 | 31, 91 | sylan2b 593 |
. . . . 5
⊢ (((𝜑 ∧ 𝑠 ∈ ℝ+) ∧ (𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
93 | 92 | ralrimivva 3114 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
∀𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
94 | | raleq 3333 |
. . . . . 6
⊢ (𝑤 = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)) |
95 | 94 | raleqbi1dv 3331 |
. . . . 5
⊢ (𝑤 = {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)) |
96 | 95 | rspcev 3552 |
. . . 4
⊢ (({𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹 ∧ ∀𝑢 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦 ∈ 𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) → ∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
97 | 22, 93, 96 | syl2anc 583 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ℝ+) →
∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
98 | 97 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑠 ∈ ℝ+ ∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) |
99 | 38, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39 | minveclem3a 24496 |
. . . 4
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌)) |
100 | | cmetmet 24355 |
. . . 4
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌)) |
101 | | metxmet 23395 |
. . . 4
⊢ ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
102 | 99, 100, 101 | 3syl 18 |
. . 3
⊢ (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌)) |
103 | 38, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39, 21 | minveclem3b 24497 |
. . 3
⊢ (𝜑 → 𝐹 ∈ (fBas‘𝑌)) |
104 | | fgcfil 24340 |
. . 3
⊢ (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (fBas‘𝑌)) → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+ ∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)) |
105 | 102, 103,
104 | syl2anc 583 |
. 2
⊢ (𝜑 → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+ ∃𝑤 ∈ 𝐹 ∀𝑢 ∈ 𝑤 ∀𝑣 ∈ 𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)) |
106 | 98, 105 | mpbird 256 |
1
⊢ (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌)))) |