MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3 Structured version   Visualization version   GIF version

Theorem minveclem3 23418
Description: Lemma for minvec 23425. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
Assertion
Ref Expression
minveclem3 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem3
Dummy variables 𝑤 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 471 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ+)
2 2z 11615 . . . . . . . . 9 2 ∈ ℤ
3 rpexpcl 13085 . . . . . . . . 9 ((𝑠 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑠↑2) ∈ ℝ+)
41, 2, 3sylancl 574 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠↑2) ∈ ℝ+)
54rphalfcld 12086 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ((𝑠↑2) / 2) ∈ ℝ+)
6 4nn 11393 . . . . . . . 8 4 ∈ ℕ
7 nnrp 12044 . . . . . . . 8 (4 ∈ ℕ → 4 ∈ ℝ+)
86, 7ax-mp 5 . . . . . . 7 4 ∈ ℝ+
9 rpdivcl 12058 . . . . . . 7 ((((𝑠↑2) / 2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
105, 8, 9sylancl 574 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
11 minvec.y . . . . . . . 8 (𝜑𝑌 ∈ (LSubSp‘𝑈))
1211adantr 466 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈))
13 rabexg 4946 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
1412, 13syl 17 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
15 eqid 2771 . . . . . . 7 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
16 oveq2 6803 . . . . . . . . 9 (𝑟 = (((𝑠↑2) / 2) / 4) → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
1716breq2d 4799 . . . . . . . 8 (𝑟 = (((𝑠↑2) / 2) / 4) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
1817rabbidv 3339 . . . . . . 7 (𝑟 = (((𝑠↑2) / 2) / 4) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})
1915, 18elrnmpt1s 5510 . . . . . 6 (((((𝑠↑2) / 2) / 4) ∈ ℝ+ ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
2010, 14, 19syl2anc 573 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
21 minvec.f . . . . 5 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2220, 21syl6eleqr 2861 . . . 4 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹)
23 oveq2 6803 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐴𝐷𝑦) = (𝐴𝐷𝑢))
2423oveq1d 6810 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑢)↑2))
2524breq1d 4797 . . . . . . . 8 (𝑦 = 𝑢 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
2625elrab 3515 . . . . . . 7 (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
27 oveq2 6803 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝐴𝐷𝑦) = (𝐴𝐷𝑣))
2827oveq1d 6810 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑣)↑2))
2928breq1d 4797 . . . . . . . 8 (𝑦 = 𝑣 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3029elrab 3515 . . . . . . 7 (𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3126, 30anbi12i 612 . . . . . 6 ((𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) ↔ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))))
32 simprll 764 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑌)
33 simprrl 766 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑌)
3432, 33ovresd 6951 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
35 minvec.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℂPreHil)
36 cphngp 23191 . . . . . . . . . . . . 13 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
37 ngpms 22623 . . . . . . . . . . . . 13 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
38 minvec.x . . . . . . . . . . . . . 14 𝑋 = (Base‘𝑈)
39 minvec.d . . . . . . . . . . . . . 14 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
4038, 39msmet 22481 . . . . . . . . . . . . 13 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
4135, 36, 37, 404syl 19 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
4241ad2antrr 705 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐷 ∈ (Met‘𝑋))
43 eqid 2771 . . . . . . . . . . . . . . 15 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4438, 43lssss 19146 . . . . . . . . . . . . . 14 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
4511, 44syl 17 . . . . . . . . . . . . 13 (𝜑𝑌𝑋)
4645ad2antrr 705 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌𝑋)
4746, 32sseldd 3753 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑋)
4846, 33sseldd 3753 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑋)
49 metcl 22356 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐷𝑣) ∈ ℝ)
5042, 47, 48, 49syl3anc 1476 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) ∈ ℝ)
5150resqcld 13241 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ∈ ℝ)
525adantr 466 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ+)
5352rpred 12074 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ)
544adantr 466 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ+)
5554rpred 12074 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ)
56 minvec.m . . . . . . . . . . 11 = (-g𝑈)
57 minvec.n . . . . . . . . . . 11 𝑁 = (norm‘𝑈)
5835ad2antrr 705 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑈 ∈ ℂPreHil)
5911ad2antrr 705 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ∈ (LSubSp‘𝑈))
60 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
6160ad2antrr 705 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑈s 𝑌) ∈ CMetSp)
62 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
6362ad2antrr 705 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐴𝑋)
64 minvec.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑈)
65 minvec.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
66 minvec.s . . . . . . . . . . 11 𝑆 = inf(𝑅, ℝ, < )
6710adantr 466 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
6867rpred 12074 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ)
6967rpge0d 12078 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (((𝑠↑2) / 2) / 4))
70 simprlr 765 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
71 simprrr 767 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
7238, 56, 57, 58, 59, 61, 63, 64, 65, 66, 39, 68, 69, 32, 33, 70, 71minveclem2 23415 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ (4 · (((𝑠↑2) / 2) / 4)))
7352rpcnd 12076 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℂ)
74 4cn 11303 . . . . . . . . . . . 12 4 ∈ ℂ
7574a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ∈ ℂ)
76 4ne0 11322 . . . . . . . . . . . 12 4 ≠ 0
7776a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ≠ 0)
7873, 75, 77divcan2d 11008 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (4 · (((𝑠↑2) / 2) / 4)) = ((𝑠↑2) / 2))
7972, 78breqtrd 4813 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ ((𝑠↑2) / 2))
80 rphalflt 12062 . . . . . . . . . 10 ((𝑠↑2) ∈ ℝ+ → ((𝑠↑2) / 2) < (𝑠↑2))
8154, 80syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) < (𝑠↑2))
8251, 53, 55, 79, 81lelttrd 10400 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) < (𝑠↑2))
83 rpre 12041 . . . . . . . . . 10 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
8483ad2antlr 706 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑠 ∈ ℝ)
85 metge0 22369 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → 0 ≤ (𝑢𝐷𝑣))
8642, 47, 48, 85syl3anc 1476 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (𝑢𝐷𝑣))
87 rpge0 12047 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 ≤ 𝑠)
8887ad2antlr 706 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ 𝑠)
8950, 84, 86, 88lt2sqd 13249 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣) < 𝑠 ↔ ((𝑢𝐷𝑣)↑2) < (𝑠↑2)))
9082, 89mpbird 247 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) < 𝑠)
9134, 90eqbrtrd 4809 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9231, 91sylan2b 581 . . . . 5 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9392ralrimivva 3120 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
94 raleq 3287 . . . . . 6 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9594raleqbi1dv 3295 . . . . 5 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9695rspcev 3460 . . . 4 (({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹 ∧ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9722, 93, 96syl2anc 573 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9897ralrimiva 3115 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9938, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39minveclem3a 23416 . . . 4 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
100 cmetmet 23302 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
101 metxmet 22358 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10299, 100, 1013syl 18 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10338, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39, 21minveclem3b 23417 . . 3 (𝜑𝐹 ∈ (fBas‘𝑌))
104 fgcfil 23287 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (fBas‘𝑌)) → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
105102, 103, 104syl2anc 573 . 2 (𝜑 → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
10698, 105mpbird 247 1 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  wral 3061  wrex 3062  {crab 3065  Vcvv 3351  wss 3723   class class class wbr 4787  cmpt 4864   × cxp 5248  ran crn 5251  cres 5252  cfv 6030  (class class class)co 6795  infcinf 8506  cc 10139  cr 10140  0cc0 10141   + caddc 10144   · cmul 10146   < clt 10279  cle 10280   / cdiv 10889  cn 11225  2c2 11275  4c4 11277  cz 11583  +crp 12034  cexp 13066  Basecbs 16063  s cress 16064  distcds 16157  TopOpenctopn 16289  -gcsg 17631  LSubSpclss 19141  ∞Metcxmt 19945  Metcme 19946  fBascfbas 19948  filGencfg 19949  MetSpcmt 22342  normcnm 22600  NrmGrpcngp 22601  ℂPreHilccph 23184  CauFilccfil 23268  CMetcms 23270  CMetSpccms 23347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219  ax-addf 10220  ax-mulf 10221
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-tpos 7507  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-oadd 7720  df-er 7899  df-map 8014  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-inf 8508  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-4 11286  df-5 11287  df-6 11288  df-7 11289  df-8 11290  df-9 11291  df-n0 11499  df-z 11584  df-dec 11700  df-uz 11893  df-q 11996  df-rp 12035  df-xneg 12150  df-xadd 12151  df-xmul 12152  df-ico 12385  df-fz 12533  df-seq 13008  df-exp 13067  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-topgen 16311  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-ghm 17865  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-rnghom 18924  df-drng 18958  df-subrg 18987  df-staf 19054  df-srng 19055  df-lmod 19074  df-lss 19142  df-lmhm 19234  df-lvec 19315  df-sra 19386  df-rgmod 19387  df-psmet 19952  df-xmet 19953  df-met 19954  df-bl 19955  df-mopn 19956  df-fbas 19957  df-fg 19958  df-cnfld 19961  df-phl 20187  df-top 20918  df-topon 20935  df-topsp 20957  df-bases 20970  df-fil 21869  df-xms 22344  df-ms 22345  df-nm 22606  df-ngp 22607  df-nlm 22610  df-clm 23081  df-cph 23186  df-cfil 23271  df-cmet 23273  df-cms 23350
This theorem is referenced by:  minveclem4a  23419
  Copyright terms: Public domain W3C validator