MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem3 Structured version   Visualization version   GIF version

Theorem minveclem3 24036
Description: Lemma for minvec 24043. The filter formed by taking elements successively closer to the infimum is Cauchy. (Contributed by Mario Carneiro, 8-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
minvec.f 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
Assertion
Ref Expression
minveclem3 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Distinct variable groups:   𝑦,   𝑦,𝑟,𝐴   𝐽,𝑟,𝑦   𝑦,𝐹   𝑦,𝑁   𝜑,𝑟,𝑦   𝑦,𝑅   𝑦,𝑈   𝑋,𝑟,𝑦   𝑌,𝑟,𝑦   𝐷,𝑟,𝑦   𝑆,𝑟,𝑦
Allowed substitution hints:   𝑅(𝑟)   𝑈(𝑟)   𝐹(𝑟)   (𝑟)   𝑁(𝑟)

Proof of Theorem minveclem3
Dummy variables 𝑤 𝑠 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . . . . . . 9 ((𝜑𝑠 ∈ ℝ+) → 𝑠 ∈ ℝ+)
2 2z 12011 . . . . . . . . 9 2 ∈ ℤ
3 rpexpcl 13453 . . . . . . . . 9 ((𝑠 ∈ ℝ+ ∧ 2 ∈ ℤ) → (𝑠↑2) ∈ ℝ+)
41, 2, 3sylancl 589 . . . . . . . 8 ((𝜑𝑠 ∈ ℝ+) → (𝑠↑2) ∈ ℝ+)
54rphalfcld 12440 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → ((𝑠↑2) / 2) ∈ ℝ+)
6 4nn 11717 . . . . . . . 8 4 ∈ ℕ
7 nnrp 12397 . . . . . . . 8 (4 ∈ ℕ → 4 ∈ ℝ+)
86, 7ax-mp 5 . . . . . . 7 4 ∈ ℝ+
9 rpdivcl 12411 . . . . . . 7 ((((𝑠↑2) / 2) ∈ ℝ+ ∧ 4 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
105, 8, 9sylancl 589 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
11 minvec.y . . . . . . . 8 (𝜑𝑌 ∈ (LSubSp‘𝑈))
1211adantr 484 . . . . . . 7 ((𝜑𝑠 ∈ ℝ+) → 𝑌 ∈ (LSubSp‘𝑈))
13 rabexg 5220 . . . . . . 7 (𝑌 ∈ (LSubSp‘𝑈) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
1412, 13syl 17 . . . . . 6 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V)
15 eqid 2824 . . . . . . 7 (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}) = (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
16 oveq2 7157 . . . . . . . . 9 (𝑟 = (((𝑠↑2) / 2) / 4) → ((𝑆↑2) + 𝑟) = ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
1716breq2d 5064 . . . . . . . 8 (𝑟 = (((𝑠↑2) / 2) / 4) → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟) ↔ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
1817rabbidv 3465 . . . . . . 7 (𝑟 = (((𝑠↑2) / 2) / 4) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)} = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})
1915, 18elrnmpt1s 5816 . . . . . 6 (((((𝑠↑2) / 2) / 4) ∈ ℝ+ ∧ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ V) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
2010, 14, 19syl2anc 587 . . . . 5 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)}))
21 minvec.f . . . . 5 𝐹 = ran (𝑟 ∈ ℝ+ ↦ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + 𝑟)})
2220, 21eleqtrrdi 2927 . . . 4 ((𝜑𝑠 ∈ ℝ+) → {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹)
23 oveq2 7157 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐴𝐷𝑦) = (𝐴𝐷𝑢))
2423oveq1d 7164 . . . . . . . . 9 (𝑦 = 𝑢 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑢)↑2))
2524breq1d 5062 . . . . . . . 8 (𝑦 = 𝑢 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
2625elrab 3666 . . . . . . 7 (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
27 oveq2 7157 . . . . . . . . . 10 (𝑦 = 𝑣 → (𝐴𝐷𝑦) = (𝐴𝐷𝑣))
2827oveq1d 7164 . . . . . . . . 9 (𝑦 = 𝑣 → ((𝐴𝐷𝑦)↑2) = ((𝐴𝐷𝑣)↑2))
2928breq1d 5062 . . . . . . . 8 (𝑦 = 𝑣 → (((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)) ↔ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3029elrab 3666 . . . . . . 7 (𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ↔ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))
3126, 30anbi12i 629 . . . . . 6 ((𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}) ↔ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))))
32 simprll 778 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑌)
33 simprrl 780 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑌)
3432, 33ovresd 7309 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) = (𝑢𝐷𝑣))
35 minvec.u . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℂPreHil)
36 cphngp 23781 . . . . . . . . . . . . 13 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
37 ngpms 23209 . . . . . . . . . . . . 13 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
38 minvec.x . . . . . . . . . . . . . 14 𝑋 = (Base‘𝑈)
39 minvec.d . . . . . . . . . . . . . 14 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
4038, 39msmet 23067 . . . . . . . . . . . . 13 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
4135, 36, 37, 404syl 19 . . . . . . . . . . . 12 (𝜑𝐷 ∈ (Met‘𝑋))
4241ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐷 ∈ (Met‘𝑋))
43 eqid 2824 . . . . . . . . . . . . . . 15 (LSubSp‘𝑈) = (LSubSp‘𝑈)
4438, 43lssss 19708 . . . . . . . . . . . . . 14 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
4511, 44syl 17 . . . . . . . . . . . . 13 (𝜑𝑌𝑋)
4645ad2antrr 725 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌𝑋)
4746, 32sseldd 3954 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑢𝑋)
4846, 33sseldd 3954 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑣𝑋)
49 metcl 22942 . . . . . . . . . . 11 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → (𝑢𝐷𝑣) ∈ ℝ)
5042, 47, 48, 49syl3anc 1368 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) ∈ ℝ)
5150resqcld 13616 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ∈ ℝ)
525adantr 484 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ+)
5352rpred 12428 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℝ)
544adantr 484 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ+)
5554rpred 12428 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑠↑2) ∈ ℝ)
56 minvec.m . . . . . . . . . . 11 = (-g𝑈)
57 minvec.n . . . . . . . . . . 11 𝑁 = (norm‘𝑈)
5835ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑈 ∈ ℂPreHil)
5911ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑌 ∈ (LSubSp‘𝑈))
60 minvec.w . . . . . . . . . . . 12 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
6160ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑈s 𝑌) ∈ CMetSp)
62 minvec.a . . . . . . . . . . . 12 (𝜑𝐴𝑋)
6362ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝐴𝑋)
64 minvec.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑈)
65 minvec.r . . . . . . . . . . 11 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
66 minvec.s . . . . . . . . . . 11 𝑆 = inf(𝑅, ℝ, < )
6710adantr 484 . . . . . . . . . . . 12 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ+)
6867rpred 12428 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (((𝑠↑2) / 2) / 4) ∈ ℝ)
6967rpge0d 12432 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (((𝑠↑2) / 2) / 4))
70 simprlr 779 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
71 simprrr 781 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4)))
7238, 56, 57, 58, 59, 61, 63, 64, 65, 66, 39, 68, 69, 32, 33, 70, 71minveclem2 24033 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ (4 · (((𝑠↑2) / 2) / 4)))
7352rpcnd 12430 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) ∈ ℂ)
74 4cn 11719 . . . . . . . . . . . 12 4 ∈ ℂ
7574a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ∈ ℂ)
76 4ne0 11742 . . . . . . . . . . . 12 4 ≠ 0
7776a1i 11 . . . . . . . . . . 11 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 4 ≠ 0)
7873, 75, 77divcan2d 11416 . . . . . . . . . 10 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (4 · (((𝑠↑2) / 2) / 4)) = ((𝑠↑2) / 2))
7972, 78breqtrd 5078 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) ≤ ((𝑠↑2) / 2))
80 rphalflt 12415 . . . . . . . . . 10 ((𝑠↑2) ∈ ℝ+ → ((𝑠↑2) / 2) < (𝑠↑2))
8154, 80syl 17 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑠↑2) / 2) < (𝑠↑2))
8251, 53, 55, 79, 81lelttrd 10796 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣)↑2) < (𝑠↑2))
83 rpre 12394 . . . . . . . . . 10 (𝑠 ∈ ℝ+𝑠 ∈ ℝ)
8483ad2antlr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 𝑠 ∈ ℝ)
85 metge0 22955 . . . . . . . . . 10 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑢𝑋𝑣𝑋) → 0 ≤ (𝑢𝐷𝑣))
8642, 47, 48, 85syl3anc 1368 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ (𝑢𝐷𝑣))
87 rpge0 12399 . . . . . . . . . 10 (𝑠 ∈ ℝ+ → 0 ≤ 𝑠)
8887ad2antlr 726 . . . . . . . . 9 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → 0 ≤ 𝑠)
8950, 84, 86, 88lt2sqd 13624 . . . . . . . 8 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → ((𝑢𝐷𝑣) < 𝑠 ↔ ((𝑢𝐷𝑣)↑2) < (𝑠↑2)))
9082, 89mpbird 260 . . . . . . 7 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢𝐷𝑣) < 𝑠)
9134, 90eqbrtrd 5074 . . . . . 6 (((𝜑𝑠 ∈ ℝ+) ∧ ((𝑢𝑌 ∧ ((𝐴𝐷𝑢)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))) ∧ (𝑣𝑌 ∧ ((𝐴𝐷𝑣)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))))) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9231, 91sylan2b 596 . . . . 5 (((𝜑𝑠 ∈ ℝ+) ∧ (𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∧ 𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))})) → (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9392ralrimivva 3186 . . . 4 ((𝜑𝑠 ∈ ℝ+) → ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
94 raleq 3396 . . . . . 6 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9594raleqbi1dv 3394 . . . . 5 (𝑤 = {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} → (∀𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠 ↔ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
9695rspcev 3609 . . . 4 (({𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} ∈ 𝐹 ∧ ∀𝑢 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))}∀𝑣 ∈ {𝑦𝑌 ∣ ((𝐴𝐷𝑦)↑2) ≤ ((𝑆↑2) + (((𝑠↑2) / 2) / 4))} (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9722, 93, 96syl2anc 587 . . 3 ((𝜑𝑠 ∈ ℝ+) → ∃𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9897ralrimiva 3177 . 2 (𝜑 → ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠)
9938, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39minveclem3a 24034 . . . 4 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌))
100 cmetmet 23893 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (CMet‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌))
101 metxmet 22944 . . . 4 ((𝐷 ↾ (𝑌 × 𝑌)) ∈ (Met‘𝑌) → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10299, 100, 1013syl 18 . . 3 (𝜑 → (𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌))
10338, 56, 57, 35, 11, 60, 62, 64, 65, 66, 39, 21minveclem3b 24035 . . 3 (𝜑𝐹 ∈ (fBas‘𝑌))
104 fgcfil 23878 . . 3 (((𝐷 ↾ (𝑌 × 𝑌)) ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (fBas‘𝑌)) → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
105102, 103, 104syl2anc 587 . 2 (𝜑 → ((𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))) ↔ ∀𝑠 ∈ ℝ+𝑤𝐹𝑢𝑤𝑣𝑤 (𝑢(𝐷 ↾ (𝑌 × 𝑌))𝑣) < 𝑠))
10698, 105mpbird 260 1 (𝜑 → (𝑌filGen𝐹) ∈ (CauFil‘(𝐷 ↾ (𝑌 × 𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  wral 3133  wrex 3134  {crab 3137  Vcvv 3480  wss 3919   class class class wbr 5052  cmpt 5132   × cxp 5540  ran crn 5543  cres 5544  cfv 6343  (class class class)co 7149  infcinf 8902  cc 10533  cr 10534  0cc0 10535   + caddc 10538   · cmul 10540   < clt 10673  cle 10674   / cdiv 11295  cn 11634  2c2 11689  4c4 11691  cz 11978  +crp 12386  cexp 13434  Basecbs 16483  s cress 16484  distcds 16574  TopOpenctopn 16695  -gcsg 18105  LSubSpclss 19703  ∞Metcxmet 20530  Metcmet 20531  fBascfbas 20533  filGencfg 20534  MetSpcms 22928  normcnm 23186  NrmGrpcngp 23187  ℂPreHilccph 23774  CauFilccfil 23859  CMetccmet 23861  CMetSpccms 23939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613  ax-addf 10614  ax-mulf 10615
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-tpos 7888  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-inf 8904  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-4 11699  df-5 11700  df-6 11701  df-7 11702  df-8 11703  df-9 11704  df-n0 11895  df-z 11979  df-dec 12096  df-uz 12241  df-q 12346  df-rp 12387  df-xneg 12504  df-xadd 12505  df-xmul 12506  df-ico 12741  df-fz 12895  df-seq 13374  df-exp 13435  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-0g 16715  df-topgen 16717  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19376  df-dvdsr 19394  df-unit 19395  df-invr 19425  df-dvr 19436  df-rnghom 19470  df-drng 19504  df-subrg 19533  df-staf 19616  df-srng 19617  df-lmod 19636  df-lss 19704  df-lmhm 19794  df-lvec 19875  df-sra 19944  df-rgmod 19945  df-psmet 20537  df-xmet 20538  df-met 20539  df-bl 20540  df-mopn 20541  df-fbas 20542  df-fg 20543  df-cnfld 20546  df-phl 20770  df-top 21502  df-topon 21519  df-topsp 21541  df-bases 21554  df-fil 22454  df-xms 22930  df-ms 22931  df-nm 23192  df-ngp 23193  df-nlm 23196  df-clm 23671  df-cph 23776  df-cfil 23862  df-cmet 23864  df-cms 23942
This theorem is referenced by:  minveclem4a  24037
  Copyright terms: Public domain W3C validator