MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem7 Structured version   Visualization version   GIF version

Theorem minveclem7 25406
Description: Lemma for minvec 25407. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem7 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.x . . 3 𝑋 = (Base‘𝑈)
2 minvec.m . . 3 = (-g𝑈)
3 minvec.n . . 3 𝑁 = (norm‘𝑈)
4 minvec.u . . 3 (𝜑𝑈 ∈ ℂPreHil)
5 minvec.y . . 3 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.w . . 3 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
7 minvec.a . . 3 (𝜑𝐴𝑋)
8 minvec.j . . 3 𝐽 = (TopOpen‘𝑈)
9 minvec.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
10 minvec.s . . 3 𝑆 = inf(𝑅, ℝ, < )
11 minvec.d . . 3 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem5 25404 . 2 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
134ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑈 ∈ ℂPreHil)
145ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑌 ∈ (LSubSp‘𝑈))
156ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → (𝑈s 𝑌) ∈ CMetSp)
167ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝐴𝑋)
17 0re 11245 . . . . . . 7 0 ∈ ℝ
1817a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ∈ ℝ)
19 0le0 12349 . . . . . . 7 0 ≤ 0
2019a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ≤ 0)
21 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑥𝑌)
22 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑤𝑌)
23 simprl 770 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0))
24 simprr 772 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))
251, 2, 3, 13, 14, 15, 16, 8, 9, 10, 11, 18, 20, 21, 22, 23, 24minveclem2 25397 . . . . 5 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0))
2625ex 412 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0)))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem6 25405 . . . . . 6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
2827adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem6 25405 . . . . . 6 ((𝜑𝑤𝑌) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
3029adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
3128, 30anbi12d 632 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) ↔ (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦)))))
32 4cn 12333 . . . . . . 7 4 ∈ ℂ
3332mul01i 11433 . . . . . 6 (4 · 0) = 0
3433breq2i 5131 . . . . 5 (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ ((𝑥𝐷𝑤)↑2) ≤ 0)
35 cphngp 25144 . . . . . . . . . . . 12 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
36 ngpms 24558 . . . . . . . . . . . 12 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
374, 35, 363syl 18 . . . . . . . . . . 11 (𝜑𝑈 ∈ MetSp)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑈 ∈ MetSp)
391, 11msmet 24413 . . . . . . . . . 10 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝐷 ∈ (Met‘𝑋))
41 eqid 2734 . . . . . . . . . . . . 13 (LSubSp‘𝑈) = (LSubSp‘𝑈)
421, 41lssss 20903 . . . . . . . . . . . 12 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
435, 42syl 17 . . . . . . . . . . 11 (𝜑𝑌𝑋)
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑌𝑋)
45 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑌)
4644, 45sseldd 3964 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑋)
47 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑌)
4844, 47sseldd 3964 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑋)
49 metcl 24288 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → (𝑥𝐷𝑤) ∈ ℝ)
5040, 46, 48, 49syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℝ)
5150sqge0d 14160 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 0 ≤ ((𝑥𝐷𝑤)↑2))
5251biantrud 531 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5350resqcld 14148 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤)↑2) ∈ ℝ)
54 letri3 11328 . . . . . . 7 ((((𝑥𝐷𝑤)↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5553, 17, 54sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5650recnd 11271 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℂ)
57 sqeq0 14143 . . . . . . . 8 ((𝑥𝐷𝑤) ∈ ℂ → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
59 meteq0 24295 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6040, 46, 48, 59syl3anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6158, 60bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ 𝑥 = 𝑤))
6252, 55, 613bitr2d 307 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ 𝑥 = 𝑤))
6334, 62bitrid 283 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ 𝑥 = 𝑤))
6426, 31, 633imtr3d 293 . . 3 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤))
6564ralrimivva 3189 . 2 (𝜑 → ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤))
66 oveq2 7421 . . . . . 6 (𝑥 = 𝑤 → (𝐴 𝑥) = (𝐴 𝑤))
6766fveq2d 6890 . . . . 5 (𝑥 = 𝑤 → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 𝑤)))
6867breq1d 5133 . . . 4 (𝑥 = 𝑤 → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
6968ralbidv 3165 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
7069reu4 3719 . 2 (∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤)))
7112, 65, 70sylanbrc 583 1 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3050  wrex 3059  ∃!wreu 3361  wss 3931   class class class wbr 5123  cmpt 5205   × cxp 5663  ran crn 5666  cres 5667  cfv 6541  (class class class)co 7413  infcinf 9463  cc 11135  cr 11136  0cc0 11137   + caddc 11140   · cmul 11142   < clt 11277  cle 11278  2c2 12303  4c4 12305  cexp 14084  Basecbs 17230  s cress 17253  distcds 17283  TopOpenctopn 17438  -gcsg 18923  LSubSpclss 20898  Metcmet 21313  MetSpcms 24274  normcnm 24534  NrmGrpcngp 24535  ℂPreHilccph 25137  CMetSpccms 25303
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215  ax-addf 11216  ax-mulf 11217
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-iin 4974  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-tpos 8233  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-fi 9433  df-sup 9464  df-inf 9465  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-uz 12861  df-q 12973  df-rp 13017  df-xneg 13136  df-xadd 13137  df-xmul 13138  df-ico 13375  df-icc 13376  df-fz 13530  df-seq 14025  df-exp 14085  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-struct 17167  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-plusg 17287  df-mulr 17288  df-starv 17289  df-sca 17290  df-vsca 17291  df-ip 17292  df-tset 17293  df-ple 17294  df-ds 17296  df-unif 17297  df-rest 17439  df-0g 17458  df-topgen 17460  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-mhm 18766  df-grp 18924  df-minusg 18925  df-sbg 18926  df-mulg 19056  df-subg 19111  df-ghm 19201  df-cmn 19769  df-abl 19770  df-mgp 20107  df-rng 20119  df-ur 20148  df-ring 20201  df-cring 20202  df-oppr 20303  df-dvdsr 20326  df-unit 20327  df-invr 20357  df-dvr 20370  df-rhm 20441  df-subrg 20539  df-drng 20700  df-staf 20809  df-srng 20810  df-lmod 20829  df-lss 20899  df-lmhm 20990  df-lvec 21071  df-sra 21141  df-rgmod 21142  df-psmet 21319  df-xmet 21320  df-met 21321  df-bl 21322  df-mopn 21323  df-fbas 21324  df-fg 21325  df-cnfld 21328  df-phl 21599  df-top 22849  df-topon 22866  df-topsp 22888  df-bases 22901  df-cld 22974  df-ntr 22975  df-cls 22976  df-nei 23053  df-haus 23270  df-fil 23801  df-flim 23894  df-xms 24276  df-ms 24277  df-nm 24540  df-ngp 24541  df-nlm 24544  df-clm 25033  df-cph 25139  df-cfil 25226  df-cmet 25228  df-cms 25306
This theorem is referenced by:  minvec  25407
  Copyright terms: Public domain W3C validator