MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  minveclem7 Structured version   Visualization version   GIF version

Theorem minveclem7 25470
Description: Lemma for minvec 25471. Since any two minimal points are distance zero away from each other, the minimal point is unique. (Contributed by Mario Carneiro, 9-May-2014.) (Revised by Mario Carneiro, 15-Oct-2015.)
Hypotheses
Ref Expression
minvec.x 𝑋 = (Base‘𝑈)
minvec.m = (-g𝑈)
minvec.n 𝑁 = (norm‘𝑈)
minvec.u (𝜑𝑈 ∈ ℂPreHil)
minvec.y (𝜑𝑌 ∈ (LSubSp‘𝑈))
minvec.w (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
minvec.a (𝜑𝐴𝑋)
minvec.j 𝐽 = (TopOpen‘𝑈)
minvec.r 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
minvec.s 𝑆 = inf(𝑅, ℝ, < )
minvec.d 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
Assertion
Ref Expression
minveclem7 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Distinct variable groups:   𝑥,𝑦,   𝑥,𝐴,𝑦   𝑥,𝐽,𝑦   𝑥,𝑁,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝐷,𝑦   𝑥,𝑆,𝑦

Proof of Theorem minveclem7
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 minvec.x . . 3 𝑋 = (Base‘𝑈)
2 minvec.m . . 3 = (-g𝑈)
3 minvec.n . . 3 𝑁 = (norm‘𝑈)
4 minvec.u . . 3 (𝜑𝑈 ∈ ℂPreHil)
5 minvec.y . . 3 (𝜑𝑌 ∈ (LSubSp‘𝑈))
6 minvec.w . . 3 (𝜑 → (𝑈s 𝑌) ∈ CMetSp)
7 minvec.a . . 3 (𝜑𝐴𝑋)
8 minvec.j . . 3 𝐽 = (TopOpen‘𝑈)
9 minvec.r . . 3 𝑅 = ran (𝑦𝑌 ↦ (𝑁‘(𝐴 𝑦)))
10 minvec.s . . 3 𝑆 = inf(𝑅, ℝ, < )
11 minvec.d . . 3 𝐷 = ((dist‘𝑈) ↾ (𝑋 × 𝑋))
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem5 25468 . 2 (𝜑 → ∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
134ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑈 ∈ ℂPreHil)
145ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑌 ∈ (LSubSp‘𝑈))
156ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → (𝑈s 𝑌) ∈ CMetSp)
167ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝐴𝑋)
17 0re 11264 . . . . . . 7 0 ∈ ℝ
1817a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ∈ ℝ)
19 0le0 12368 . . . . . . 7 0 ≤ 0
2019a1i 11 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 0 ≤ 0)
21 simplrl 776 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑥𝑌)
22 simplrr 777 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → 𝑤𝑌)
23 simprl 770 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0))
24 simprr 772 . . . . . 6 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))
251, 2, 3, 13, 14, 15, 16, 8, 9, 10, 11, 18, 20, 21, 22, 23, 24minveclem2 25461 . . . . 5 (((𝜑 ∧ (𝑥𝑌𝑤𝑌)) ∧ (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0))) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0))
2625ex 412 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) → ((𝑥𝐷𝑤)↑2) ≤ (4 · 0)))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem6 25469 . . . . . 6 ((𝜑𝑥𝑌) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
2827adantrr 717 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦))))
291, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11minveclem6 25469 . . . . . 6 ((𝜑𝑤𝑌) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
3029adantrl 716 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
3128, 30anbi12d 632 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((((𝐴𝐷𝑥)↑2) ≤ ((𝑆↑2) + 0) ∧ ((𝐴𝐷𝑤)↑2) ≤ ((𝑆↑2) + 0)) ↔ (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦)))))
32 4cn 12352 . . . . . . 7 4 ∈ ℂ
3332mul01i 11452 . . . . . 6 (4 · 0) = 0
3433breq2i 5150 . . . . 5 (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ ((𝑥𝐷𝑤)↑2) ≤ 0)
35 cphngp 25208 . . . . . . . . . . . 12 (𝑈 ∈ ℂPreHil → 𝑈 ∈ NrmGrp)
36 ngpms 24614 . . . . . . . . . . . 12 (𝑈 ∈ NrmGrp → 𝑈 ∈ MetSp)
374, 35, 363syl 18 . . . . . . . . . . 11 (𝜑𝑈 ∈ MetSp)
3837adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑈 ∈ MetSp)
391, 11msmet 24468 . . . . . . . . . 10 (𝑈 ∈ MetSp → 𝐷 ∈ (Met‘𝑋))
4038, 39syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝐷 ∈ (Met‘𝑋))
41 eqid 2736 . . . . . . . . . . . . 13 (LSubSp‘𝑈) = (LSubSp‘𝑈)
421, 41lssss 20935 . . . . . . . . . . . 12 (𝑌 ∈ (LSubSp‘𝑈) → 𝑌𝑋)
435, 42syl 17 . . . . . . . . . . 11 (𝜑𝑌𝑋)
4443adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑌𝑋)
45 simprl 770 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑌)
4644, 45sseldd 3983 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑥𝑋)
47 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑌)
4844, 47sseldd 3983 . . . . . . . . 9 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 𝑤𝑋)
49 metcl 24343 . . . . . . . . 9 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → (𝑥𝐷𝑤) ∈ ℝ)
5040, 46, 48, 49syl3anc 1372 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℝ)
5150sqge0d 14178 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → 0 ≤ ((𝑥𝐷𝑤)↑2))
5251biantrud 531 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5350resqcld 14166 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤)↑2) ∈ ℝ)
54 letri3 11347 . . . . . . 7 ((((𝑥𝐷𝑤)↑2) ∈ ℝ ∧ 0 ∈ ℝ) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5553, 17, 54sylancl 586 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (((𝑥𝐷𝑤)↑2) ≤ 0 ∧ 0 ≤ ((𝑥𝐷𝑤)↑2))))
5650recnd 11290 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (𝑥𝐷𝑤) ∈ ℂ)
57 sqeq0 14161 . . . . . . . 8 ((𝑥𝐷𝑤) ∈ ℂ → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
5856, 57syl 17 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ (𝑥𝐷𝑤) = 0))
59 meteq0 24350 . . . . . . . 8 ((𝐷 ∈ (Met‘𝑋) ∧ 𝑥𝑋𝑤𝑋) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6040, 46, 48, 59syl3anc 1372 . . . . . . 7 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((𝑥𝐷𝑤) = 0 ↔ 𝑥 = 𝑤))
6158, 60bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) = 0 ↔ 𝑥 = 𝑤))
6252, 55, 613bitr2d 307 . . . . 5 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ 0 ↔ 𝑥 = 𝑤))
6334, 62bitrid 283 . . . 4 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → (((𝑥𝐷𝑤)↑2) ≤ (4 · 0) ↔ 𝑥 = 𝑤))
6426, 31, 633imtr3d 293 . . 3 ((𝜑 ∧ (𝑥𝑌𝑤𝑌)) → ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤))
6564ralrimivva 3201 . 2 (𝜑 → ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤))
66 oveq2 7440 . . . . . 6 (𝑥 = 𝑤 → (𝐴 𝑥) = (𝐴 𝑤))
6766fveq2d 6909 . . . . 5 (𝑥 = 𝑤 → (𝑁‘(𝐴 𝑥)) = (𝑁‘(𝐴 𝑤)))
6867breq1d 5152 . . . 4 (𝑥 = 𝑤 → ((𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
6968ralbidv 3177 . . 3 (𝑥 = 𝑤 → (∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))))
7069reu4 3736 . 2 (∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ↔ (∃𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑥𝑌𝑤𝑌 ((∀𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)) ∧ ∀𝑦𝑌 (𝑁‘(𝐴 𝑤)) ≤ (𝑁‘(𝐴 𝑦))) → 𝑥 = 𝑤)))
7112, 65, 70sylanbrc 583 1 (𝜑 → ∃!𝑥𝑌𝑦𝑌 (𝑁‘(𝐴 𝑥)) ≤ (𝑁‘(𝐴 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wral 3060  wrex 3069  ∃!wreu 3377  wss 3950   class class class wbr 5142  cmpt 5224   × cxp 5682  ran crn 5685  cres 5686  cfv 6560  (class class class)co 7432  infcinf 9482  cc 11154  cr 11155  0cc0 11156   + caddc 11159   · cmul 11161   < clt 11296  cle 11297  2c2 12322  4c4 12324  cexp 14103  Basecbs 17248  s cress 17275  distcds 17307  TopOpenctopn 17467  -gcsg 18954  LSubSpclss 20930  Metcmet 21351  MetSpcms 24329  normcnm 24590  NrmGrpcngp 24591  ℂPreHilccph 25201  CMetSpccms 25367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234  ax-addf 11235  ax-mulf 11236
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fi 9452  df-sup 9483  df-inf 9484  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-q 12992  df-rp 13036  df-xneg 13155  df-xadd 13156  df-xmul 13157  df-ico 13394  df-icc 13395  df-fz 13549  df-seq 14044  df-exp 14104  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-rest 17468  df-0g 17487  df-topgen 17489  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-cring 20234  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-rhm 20473  df-subrg 20571  df-drng 20732  df-staf 20841  df-srng 20842  df-lmod 20861  df-lss 20931  df-lmhm 21022  df-lvec 21103  df-sra 21173  df-rgmod 21174  df-psmet 21357  df-xmet 21358  df-met 21359  df-bl 21360  df-mopn 21361  df-fbas 21362  df-fg 21363  df-cnfld 21366  df-phl 21645  df-top 22901  df-topon 22918  df-topsp 22940  df-bases 22954  df-cld 23028  df-ntr 23029  df-cls 23030  df-nei 23107  df-haus 23324  df-fil 23855  df-flim 23948  df-xms 24331  df-ms 24332  df-nm 24596  df-ngp 24597  df-nlm 24600  df-clm 25097  df-cph 25203  df-cfil 25290  df-cmet 25292  df-cms 25370
This theorem is referenced by:  minvec  25471
  Copyright terms: Public domain W3C validator